45 research outputs found

    The Role of Built Environment's Physical Urban Form in Supporting Rapid Tsunami Evacuations: Using Computer-Based Models and Real-World Data as Examination Tools

    Get PDF
    Cities are increasingly becoming hot-spots for nature-originated disasters. While the role of the urban built environment in fostering disaster resilience has been recognized for some time, it has been difficult to translate this potential into practice. This is especially challenging in the case of rapid onset crises such as near-field tsunamis when appropriate urban forms must support the populations' ability to autonomously carry out safe and timely responses. In this respect, much of current research remains focused on large-scale elements of urban configuration (streets, squares, parks, etc.,) through which people move during an emergency. In contrast, the critical micro-scale of evacuees' experiences within the built environment is not commonly examined. This paper addresses this shortfall through a macro- and micro-scale analysis of a near-field tsunami scenario affecting the city of Viña del Mar, Chile, including a mixed-methods approach that combines computer-based models and fieldwork. The results show significant macro-scale tsunami vulnerability throughout major areas of the city, which nonetheless could be mitigated by existing nearby high ground and an urban form that allows short evacuation times. However, micro-scale outcomes show comparatively deficient spatial conditions that during an emergency might lead to dangerous outcomes including bottlenecks, falls and panic. Vertical evacuation, in turn, is confirmed as a suitable option for reducing vulnerability, but further examination of each shelter's characteristics is required

    Discriminating the occurrence of inundation in tsunami early warning with one-dimensional convolutional neural networks

    Get PDF
    Tsunamis are natural phenomena that, although occasional, can have large impacts on coastal environments and settlements, especially in terms of loss of life. An accurate, detailed and timely assessment of the hazard is essential as input for mitigation strategies both in the long term and during emergencies. This goal is compounded by the high computational cost of simulating an adequate number of scenarios to make robust assessments. To reduce this handicap, alternative methods could be used. Here, an enhanced method for estimating tsunami time series using a one-dimensional convolutional neural network model (1D CNN) is considered. While the use of deep learning for this problem is not new, most of existing research has focused on assessing the capability of a network to reproduce inundation metrics extrema. However, for the context of Tsunami Early Warning, it is equally relevant to assess whether the networks can accurately predict whether inundation would occur or not, and its time series if it does. Hence, a set of 6776 scenarios with magnitudes in the range Mw 8.0–9.2 were used to design several 1D CNN models at two bays that have different hydrodynamic behavior, that would use as input inexpensive low-resolution numerical modeling of tsunami propagation to predict inundation time series at pinpoint locations. In addition, different configuration parameters were also analyzed to outline a methodology for model testing and design, that could be applied elsewhere. The results show that the network models are capable of reproducing inundation time series well, either for small or large flow depths, but also when no inundation was forecast, with minimal instances of false alarms or missed alarms. To further assess the performance, the model was tested with two past tsunamis and compared with actual inundation metrics. The results obtained are promising, and the proposed model could become a reliable alternative for the calculation of tsunami intensity measures in a faster than real time manner. This could complement existing early warning system, by means of an approximate and fast procedure that could allow simulating a larger number of scenarios within the always restricting time frame of tsunami emergencies.Tide gauge data were obtained from the Sea Level Station Monitoring Facility of the Intergovernmental Oceanographic Commission (http://www.ioc-sealevelmonitoring.org/list.php). The coarser bathymetric and topographic data from the General Bathymetric Chart of the Ocean (https://www.gebco.net/data_and_products/gridded_bathymetry_data/). The authors acknowledge SHOA for providing nautical charts and coastal zone plans used to generate high resolution topo-bathymetric grids for research purposes. We are deeply grateful with A. Gubler that prepared a first version of the high resolution bathymetry grids. The authors acknowledge the computer resources at CTE-POWER (https://www.bsc.es/supportkc/docs/CTE-POWER/overview) and the technical support provided by BSC. We are greatly thankful the EDANYA Group at Málaga University for sharing the Tsunami-HySEA code. Most figures were generated with Python91,92,93 and Global Mapping Tools94. JN deeply thanks support of Mitiga Solutions during his secondment. PAC would like to thank funding by ANID, Chile Grants FONDEF ID19I10048, Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) ANID/FONDAP/15110017, and Centro Científico Tecnológico de Valparaíso, ANID PIA/APOYO AFB180002. NZ has received funding from the Marie Skłodowska-Curie grant agreement H2020-MSCA-COFUND-2016-75443.Peer ReviewedPostprint (published version

    Stand-alone tsunami alarm equipment

    Get PDF
    One of the quickest means of tsunami evacuation is transfer to higher ground soon after strong and long ground shaking. Ground shaking itself is a good initiator of the evacuation from disastrous tsunami. Longer period seismic waves are considered to be more correlated with the earthquake magnitude. We investigated the possible application of this to tsunami hazard alarm using single-site ground motion observation. Information from the mass media is sometimes unavailable due to power failure soon after a large earthquake. Even when an official alarm is available, multiple information sources of tsunami alert would help people become aware of the coming risk of a tsunami. Thus, a device that indicates risk of a tsunami without requiring other data would be helpful to those who should evacuate. Since the sensitivity of a low-cost MEMS (microelectromechanical systems) accelerometer is sufficient for this purpose, tsunami alarm equipment for home use may be easily realized. Amplitude of long-period (20 s cutoff) displacement was proposed as the threshold for the alarm based on empirical relationships among magnitude, tsunami height, hypocentral distance, and peak ground displacement of seismic waves. Application of this method to recent major earthquakes indicated that such equipment could effectively alert people to the possibility of tsunami

    A new remote predictor of wave reflection based on runup asymmetry

    Get PDF
    Reflected waves account for a significant part of the nearshore energy budget and influence incoming waves, nearshore circulation and sediment transport. The use of swash parameters to estimate wave reflection is investigated at three different beaches ranging from highly reflective to dissipative. It is observed that it is essential to account for swash processes when estimating reflection, in particular at intermediate and reflective beaches with a steep beachface. Our results show that runup asymmetry in uprush/backwash can be used as a proxy for dissipation in the swash zone: larger asymmetry values indicating greater dissipation. In our dataset, a reflection predictor based on runup asymmetry has better skill in comparison to empirical predictors based on surf similarity, because runup is a process that integrates both surf and swash zone wave transformation. Runup asymmetry behaves as a swash similarity parameter and reflects an equilibrium between swash period, slope and dissipation.</p

    Outpatient Parenteral Antibiotic Treatment vs Hospitalization for Infective Endocarditis: Validation of the OPAT-GAMES Criteria

    Get PDF

    No hay planeta B, hay plan B : marca de calzado ecológico para jóvenes activistas

    No full text
    Memoria (Diseñador Gráfico)Es importante analizar el problema de la escasez de alternativas de calzados que representen los cambios socio culturales que enfrentan los jóvenes chilenos entre 20 y 30 años, porque a través de estos se manifiesta su identidad, intereses e inquietudes. El calzado ha cambiado a lo largo de los años debido a la disponibilidad de nuevos materiales, tecnologías y según las distintas necesidades culturales, también diferentes factores económicos, políticos y sociales que juegan un papel importante en su diseño. Es importante retratar el modo de vida contemporáneo a partir de las problemáticas, gustos e inquietudes de cada periodo para dar cuenta de los cambios socio culturales
    corecore