17 research outputs found

    Improving the production of the denatured recombinant N-terminal domain of rhoptry-associated protein 2 from a Plasmodium falciparum target in the pathology of anemia in falciparum malaria

    Get PDF
    Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.CNP

    Rotavirus and adenovirus in Rondônia

    Get PDF
    The present work consists of analysis of the Work Routine Management development and implementation, in a process (register) of Operational Units in an Agro-industrial Cooperative, in order to use management tools that facilitate the identification of possible problems that hamper the results and their respective causes, and the execution of routine activities. The analysis consists of process mapping, creation and review of process indicators, as well as the definition of goals for monitoring and activating Routine Management. It also includes the survey of opportunities for improvement and the definition of an action plan in order to optimize the process for those involved, making it possible to act by monitoring the results obtained, tracing future actions and not only for correcting mistakes occurred during work routines

    Genetic Diversity of MSP1 Block 2 of Plasmodium vivax Isolates from Manaus (Central Brazilian Amazon)

    Get PDF
    The diversity of MSP1 in both Plasmodium falciparum and P. vivax is presumed be associated to parasite immune evasion. In this study, we assessed genetic diversity of the most variable domain of vaccine candidate N-terminal PvMSP1 (Block 2) in field isolates of Manaus. Forty-seven blood samples the polymorphism of PvMSP1 Block 2 generates four fragment sizes. In twentyeight of them, sequencing indicated seven haplotypes of PvMSP1 Block 2 circulating among field isolates. Evidence of striking exchanges was observed with two stretches flanking the repeat region and two predicted recombination sites were described. Single nucleotide polymorphisms determined with concurrent infections per patient indicated that nonsynonymous substitutions occurred preferentially in the repeat-rich regions which also were predicted as B-cell epitopes. The comprehensive understanding of the genetic diversity of the promising Block 2 associated with clinical immunity and a reduced risk of infection by Plasmodium vivax would be important for the rationale of malaria vaccine designs

    Zerumbone from Zingiber zerumbet (L.) smith: a potential prophylactic and therapeutic agent against the cariogenic bacterium Streptococcus mutans

    Get PDF
    Abstract Background Essential oil obtained from rhizomes of the Zingiber zerumbet (L.) Smith (popularly known in Brazil as bitter ginger) is mainly constituted by the biomolecule zerumbone, which exhibit untapped antimicrobial potential. The aim of this study was to investigate the antimicrobial activity of the zerumbone from bitter ginger rhizomes against the cariogenic agent Streptococcus mutans. Methods Firstly, the essential oil from rhizomes of Zingiber zerumbet (L.) Smith extracted by hydrodistillation was submitted to purification and recrystallization process to obtain the zerumbone compound. The purity of zerumbone was determined through high-performance liquid chromatography analysis. Different concentrations of zerumbone were tested against the standard strain S. mutans (ATCC 35668) by using microdilution method. The speed of cidal activity was determined through a time kill-curve assay. The biological cytotoxicity activity of zerumbone was assessed using Vero cell line through MTT assay. Results The zerumbone showed a minimum inhibitory concentration (MIC) of 250 μg/mL and a minimum bactericidal concentration (MBC) of 500 μg/mL against S. mutans. After six hours of bacteria-zerumbone interaction, all concentrations tested starts to kill the bacteria and all bacteria were killed between 48 and 72 h period at the concentration of 500 μg/mL (99,99% of bacteria were killed in comparison with original inoculum). In addition, zerumbone showed no cytotoxicity activity on mammalian continuous cells line. Conclusions These results draw attention to the potential of zerumbone as antimicrobial agent against S. mutans infection, indicating its possible use in the phyto-pharmaceutical formulations as new approach to prevent and treat tooth decay disease

    Calodium hepaticum: household clustering transmission and the finding of a source of human spurious infection in a community of the Amazon region.

    Get PDF
    BACKGROUND: Calodium hepaticum (syn. Capillaria hepatica) is a worldwide helminth parasite of which several aspects of transmission still remain unclear. In the Amazon region, the mechanism of transmission based on the ingestion of eggs present in the liver of wild mammals has been suggested as the cause of the spurious infections described. We performed an epidemiological investigation to determine the incidence, risk of spurious infection and the dynamics of transmission of C. hepaticum in a community of the Brazilian Amazon. METHODOLOGY/PRINCIPAL FINDINGS: Stool samples of 135 individuals, two dog feces and liver tissue from a peccary (captured and eaten by the residents) were analyzed by conventional microscopy. Dog feces were collected from the gardens of households presenting human cases of spurious C. hepaticum infections. Community practices and feeding habits related to the transmission of the parasite were investigated. The individual incidence of spurious infection was 6.7% (95% CI: 2.08-11.24). Cases of spurious infection were observed in 7.5% of the families and the household incidence was from 50% to 83.3%. The risk of spurious infection was 10-fold greater in persons consuming the liver of wild mammals (p = 0.02). The liver tissue of a peccary and one feces sample of a dog presented eggs of C. hepaticum. The consumption of the infected liver was the cause of the spurious infections reported in one household. CONCLUSIONS/SIGNIFICANCE: This is the first identification of a source of spurious infection by C. hepaticum in humans and we describe a high rate of incidence in household clusters related to game liver alimentary habits. The finding of a dog feces contaminating peridomiciliary ground suggests the risk of new infections. We conclude that the mechanism of transmission based on the ingestion of liver is important for the dynamics of transmission of C. hepaticum in the studied area

    Improving the production of the denatured recombinant N-terminal domain of rhoptry-associated protein 2 from a Plasmodium falciparum target in the pathology of anemia in falciparum malaria

    No full text
    Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-β-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients

    Rotavirus and adenovirus in Rondônia

    No full text
    Acute gastroenteritis is one of the most common diseases in humans worldwide. Viral gastroenteritis is a global problem in infants and young children. In this study the incidence of diarrhea was assessed in 877 hospitalized children under five years old, over a period of 24 months and distributed in 470 cases of diarrhea and 407 age-matched group with other pathologies, as control group. Two antigen detection techniques based on enzyme immunoassay (EIA) and latex particles were used for detection of rotavirus and adenovirus. Rotavirus A was a major cause of gastroenteritis with 23.6% of cases, being 90% of these cases in young children. Adenovirus infections was detected by EIA with frequency of 6.4%. Rotavirus and adenovirus were detected in 10.1 and 1.7% of stools from control group, respectively. Interestingly, the frequency of the youngest children in the control group excreting Rotavirus A was comparable to that detected in stools from diarrheic children. We cannot rule out the existence of other enteric viruses because the etiology of 171 cases of diarrhea was not determined and active search for astrovirus and calicivirus was not done. This is the first study that shows the presence of enteric viruses in the infantile population from Western Brazilian Amazonia and it was important to help physicians in the treatment of viral gastroenteritis

    CHARACTERIZATION OF ENTEROAGGREGATIVE ESCHERICHIA COLI AMONG DIARRHEAL CHILDRENIN WESTERN BRAZILIAN AMAZON

    No full text
    ABSTRACT BACKGROUND: Enteroaggregative Escherichia coli (EAEC) is one of the main acute and chronic diarrhea causes both in children and adults, mainly in developing countries. OBJECTIVE: The aim of the present study is to characterize EAEC strains isolated from faecal samples and to identify genes potentially contributing to virulence, biofilm production and antimicrobial resistance in children admitted to a pediatric hospital in Porto Velho, Rondônia State. METHODS: The total of 1,625 E. coli specimens were isolated from 591 children in the age group 6 years or younger who were hospitalized in Cosme and Damião Children Hospital in Porto Velho, between February 2010 and February 2012, with acute gastroenteritis. Colonies suggestive of E. coli were subjected to polymerase chain reaction testing in order to identify the virulence factors. The in vitro adhesion assays using HEp-2 adherence were tests. Biofilm detection through spectrophotometry and antimicrobial susceptibility tests were conducted in the disk diffusion method. RESULTS: The mentioned study examined 591 stool samples from children with diarrhea. Diarrheogenic E. coli was found in 27.4% (162/591) of the children. EAEC was the diarreagenic E. coli most frequently associated with diarrhea 52.4% (85/162), which was followed by enteropathogenic E. coli 43.8% (71/162), enterotoxigenic E. coli 2.4% (4/162), and enterohemorrhagic E. coli 1.2% (2/162). The aggR gene was detected in 63.5% (54/85) of EAEC isolates; moreover, statistically significant correlation was observed among typical EAEC (aggR) and aatA (P<0.0001), irp2 (P=0.0357) and shf (P=0.0328). It was recorded that 69% (59/85) of the 85 analyzed EAEC strains were biofilm producers; 73% (43/59) of the biofilm producers carried the aggR gene versus 42.3% (11/26) of non-producers (P=0.0135). In addition, there was association between the aatA gene and biofilm production; 61% (36/59) of the samples presented producer strains, versus 19.2% (5/26) of non-producers (P<0.0004). Antibiotic sensitivity test evidenced that most EAEC were ampicillin 70.6% (60/85), sulfamethoxazole 60% (51/85), tetracycline 44.7% (38/85) and cefotaxime 22.4% (19/85) resistant. CONCLUSION: As far as it is known, the present study is pioneer in Northern Brazil to investigate EAEC virulence factors and to show the antimicrobial susceptibility of EAEC strains isolated from children with diarrhea

    Morphometric parameters of the eggs of <i>C. hepaticum</i> from human stools, peccary liver tissue and dog feces.

    No full text
    <p>Legend:</p><p>µm = micrometer.</p><p>n<sub>1</sub> = sample size.</p><p>n<sub>2</sub> = number of eggs measured.</p><p>SD = standard deviation.</p
    corecore