23 research outputs found

    High-Rate Solid-Liquid Separation Coupled With Nitrogen and Phosphorous Treatment of Swine Manure: Effect on Ammonia Emission

    Get PDF
    A new treatment system was developed to meet multiple environmental performance standards including to substantially reduce ammonia emissions. It was tested full-scale for 2-years in a 5,145-head finishing swine farm with two anaerobic lagoons. The system combined high-rate solid-liquid separation with nitrogen and phosphorus removal processes. Both vertical radial plum mapping (VRPM) and floating static chamber techniques were used to measure NH3 emission fluxes from anaerobic storage lagoons and the total farm-level NH3 emission rates. The VRPM used an open-path tunable diode laser absorption spectroscopy (TDL) and the flux chamber used a photoacoustic gas analyzer to accurately measure NH3 concentration. After the treatment system started, one of the two lagoons became inactive without receiving anymore flushed manure. The ammonia emission flux from the other lagoon with the treated effluent decreased from 43.9 to 6.8 kg-N ha−1 d−1 1.5 years after implementation of the new treatment system. The NH3 emission flux from the inactive lagoon also decreased similarly because the already stored old manure of the lagoon prior to inactivation was diluted with rainfalls and lost some NH3 via volatilization. The total farm-level NH3 emission rates decreased from 1.72 g s−1 to below detection level of the VRPM technique. Using the minimum detection level of the TDL with R2 > 90% (i.e., 8.1 8.1 μL L−1-m), the total farm-level NH3 emission rates in the second year were less than 0.04–0.15 g s−1. These results suggested that the impact of the new treatment system on NH3 emission reduction was equivalent to closing conventional swine lagoons while actively growing 5,145 pigs with minimal ammonia emissions from the farm

    Risk factors associated with the prevalence of Shiga-toxin-producing Escherichia coli in manured soils on certified organic farms in four regions of the USA

    Get PDF
    IntroductionBiological soil amendments of animal origin (BSAAO), including untreated amendments are often used to improve soil fertility and are particularly important in organic agriculture. However, application of untreated manure on cropland can potentially introduce foodborne pathogens into the soil and onto produce. Certified organic farms follow the USDA National Organic Program (NOP) standards that stipulate a 90- or 120-day interval between application of untreated manure and crop harvest, depending on whether the edible portion of the crop directly contacts the soil. This time-interval metric is based on environmental factors and does not consider a multitude of factors that might affect the survival of the main pathogens of concern. The objective of this study was to assess predictors for the prevalence of Shiga-toxin-producing Escherichia coli (non-O157 STEC) in soils amended with untreated manure on USDA-NOP certified farms.MethodsA longitudinal, multi-regional study was conducted on 19 farms in four USA regions for two growing seasons (2017–2018). Untreated manure (cattle, horse, and poultry), soil, and irrigation water samples were collected and enrichment cultured for non-O157 STEC. Mixed effects logistic regression models were used to analyze the predictors of non-O157 STEC in the soil up to 180 days post-manure application.Results and discussionResults show that farm management practices (previous use with livestock, presence of animal feces on the field, season of manure application) and soil characteristics (presence of generic E. coli in the soil, soil moisture, sodium) increased the odds of STEC-positive soil samples. Manure application method and snowfall decreased the odds of detecting STEC in the soil. Time-variant predictors (year and sampling day) affected the presence of STEC. This study shows that a single metric, such as the time interval between application of untreated manure and crop harvest, may not be sufficient to reduce the food safety risks from untreated manure, and additional environmental and farm-management practices should also be considered. These findings are of particular importance because they provide multi-regional baseline data relating to current NOP wait-time standards. They can therefore contribute to the development of strategies to reduce pathogen persistence that may contribute to contamination of fresh produce typically eaten raw from NOP-certified farms using untreated manure

    Potential of olive mill waste and compost as biobased pesticides against weeds, fungi, and nematodes

    No full text
    The phytotoxic and antimicrobial properties of olive mill wastes have been widely investigated and demonstrated over the past decade. However, their potential utilization as biodegradable pesticides against plant pathogens is still poorly understood. In this study, a series of laboratory bioassays was designed to test the inhibitory effects of sterile water extracts of two-phase olive mill waste (TPOMW) and TPOMW composts with different degrees of stabilization on several different plant pathogens. Fungicidal properties of TPOMW extracts, assayed in a microwell assay format, showed that the growth of Phytophthora capsici was consistently and strongly inhibited by all TPOMW extracts diluted 1:10 (w:v). In contrast, suppression of Pythium ultimum and Botrytis cinerea by the extracts was not as strong and depended on the specific TPOMW sample. Mature compost inhibited P. capsici and B. cinerea at dilutions as great as 1:50, w:v. Neither TPOMW nor TPOMW compost extracts were able to inhibit the growth of the basidiomycete root rot agent Rhizoctonia solani. In addition, studies were conducted on the allelopathic effects of TPOMW extracts on seed germination of four highly invasive and globally distributed weeds (Amaranthus retroflexus, Solanum nigrum, Chenopodium album and Sorghum halepense). Both the TPOMW and immature TPOMW compost extracts substantially inhibited germination of A. retroflexus and S. nigrum, whereas mature composts extracts only partially reduced the germination of S. nigrum. Finally, TPOMW extracts strongly inhibited egg hatch and second-stage juvenile (J2) motility of the root-knot nematode Meloidogyne incognita. However, only higher concentrations of stage-one and stage-two TPOMW compost extracts exerted a suppressive effect on both J2 motility and on egg hatch. The study shows the high potential of naturally occurring chemicals present in TPOMW and TPOMW composts that should be further investigated as bio-pesticides for their use in sustainable agricultural systems.Peer reviewe

    Impacts and interactions of organic compounds with chlorine sanitizer in recirculated and reused produce processing water.

    No full text
    Water conservation and economics dictate that fresh produce processors reuse/recirculate the process water. However, the ensuing accumulation of organic matter in water depletes the chlorine sanitizer required for food safety. In this study, we comprehensively investigated chemical compounds that are responsible for water quality in relation to chemical oxygen demand (COD) and chlorine demand (CLD), the two most critical factors associated with water treatment and chlorine replenishment. Simulating commercial fresh-cut wash operations, multiple batches of diced cabbage (0.3 x 0.3 cm2) were washed in the same tank of water. The major components were isolated from the wash water and analyzed by HPLC. Sugars were the predominant compounds (82.7% dry weight) and the major contributor to COD (81.6%), followed by proteins/peptides (7.3% dry weight, 5.3% COD), organic acids (6.2% dry weight, 3.6% COD), and phenolics (0.5% dry weight, 0.5% COD). By repeated time course measures, the effect of these chemicals on CLD are dependent on the chemical structure, concentration in the wash water, and their rate of reaction. Proteins/peptides accounted for about 50% of the total CLD over a 120-min period and phenolics was 21% at 5 min, but diminished with time. The contribution by organic acids and sugars increased continuously, reaching 22% and 16% of total CLD at 120 min of chlorination, respectively. Collectively, these compounds represented 86% of the CLD in cabbage wash water at 5 min and greater than 94% CLD afterwards. This is the first systematic report on the source of COD and CLD during fresh produce washing. It provides essential information for the produce processors to develop safe, effective, and economical wash water treatment/reuse and chlorine replenishment strategies

    Association between bacterial survival and free chlorine concentration during commercial fresh-cut produce wash operation

    No full text
    Determining the minimal effective free chlorine (FC) concentration for preventing pathogen survival and cross-contamination during produce washing is critical for developing science-and risk-based food safety practices. The correlation between dynamic FC concentrations and bacterial survival was investigated during commercial washing of chopped Romaine lettuce, shredded Iceberg lettuce, and diced cabbage as pathogen inoculation study during commercial operation is not feasible. Wash water was sampled every 30 min and assayed for organic loading, FC, and total aerobic mesophilic bacteria after chlorine neutralization. Water turbidity, chemical oxygen demand, and total dissolved solids increased significantly over time, with more rapid increases in diced cabbage water. Combined chlorine increased consistently while FC fluctuated in response to rates of chlorine dosing, product loading, and water replenishment. Total bacterial survival showed a strong correlation with real-time FC concentration. Under approximately 10 mg/L, increasing FC significantly reduced the frequency and population of surviving bacteria detected. Increasing FC further resulted in the reduction of the aerobic plate count to below the detection limit (50 CFU/100 mL), except for a few sporadic positive samples with low cell counts. This study confirms that maintaining at least 10 mg/L FC in wash water strongly reduced the likelihood of bacterial survival and thus potential cross contamination of washed produce

    Cultivating Food Safety Together: Insights About the Future of Produce Safety in the U.S. Controlled Environment Agriculture Sector

    No full text
    Controlled environment agriculture (CEA) is a rapidly growing sector that presents unique challenges and opportunities in ensuring food safety. This manuscript highlights critical gaps and needs to promote food safety in CEA systems as identified by stakeholders (n=47) at the Strategizing to Advance Future Extension and Research (S.A.F.E.R.) CEA conference held in April 2023 at The Ohio State University’s Ohio CEA Research Center. Feedback collected at the conference was analyzed using an emergent thematic analysis approach to determine key areas of focus. Research-based guidance is specific to the type of commodity, production system type, and size. Themes include the need for improved supply chain control, cleaning, and sanitization practices, pathogen preventive controls and mitigation methods and training and education. Discussions surrounding supply chain control underscored the significance of the need for approaches to mitigate foodborne pathogen contamination. Effective cleaning and sanitization practices are vital to maintaining a safe production environment, with considerations such as establishing standard operating procedures, accounting for hygienic equipment design, and managing the microbial communities within the system. Data analysis further highlights the need for risk assessments, validated pathogen detection methods, and evidence-based guidance in microbial reduction. In addition, training and education were identified as crucial in promoting a culture of food safety within CEA. The development of partnerships between industry, regulatory, and research institutions are needed to advance data-driven guidance and practices across the diverse range of CEA operations and deemed essential for addressing challenges and advancing food safety practices in CEA. Considering these factors, the CEA industry can enhance food safety practices, foster consumer trust, and support its long-term sustainability
    corecore