347 research outputs found

    Response to Wolf et al.: Furthering Debate over the Suitability of Trap-Neuter-Return for Stray Cat Management

    Get PDF
    To continue dialogue over proposed Australian trials of Trap-Neuter-Return (TNR), we applied a framework requiring identification of areas of agreement, areas of disagreement, and identification of empirical data collection required to resolve disagreements. There is agreement that Australia has a problem with stray cats, causing problems of impacts on wildlife, nuisance,disease transmission (including public health issues and exchange of diseases between stray cat and pet cat populations), poor welfare outcomes for stray cats, and an emotional burden on staff euthanising healthy stray cats. There is disagreement on whether (i) current measures are failing, leading to unacceptably high euthanasia levels, (ii) some contributors to the debate misunderstand TNR, (iii) TNR trials will reduce urban cat populations and associated problems, (iv) TNR is an ethical solution to cat overpopulation, and (v) some contributors to the debate promulgated misinformation. Although not everyone agrees that TNR trials should proceed, as a hypothetical exploration, we propose an experimental approach explicitly comparing TNR to alternatives. Trials could only be considered if other detailed and well-funded attempts at stray cat control focusing across an entire Local Government Area (LGA) prove ineffective

    A Case of Letting the Cat out of the Bag - Why Trap-Neuter-Return is Not an Ethical Solution for Stray Cat (Felis Catus) Management.

    Get PDF
    Trap-Neuter-Return (TNR) programs, in which stray cats are captured, neutered and returned to the environment are advocated as a humane, ethical alternative to euthanasia. We review the TNR literature in light of current debate over whether or not there should be further TNR trials in Australia. We revisit the problems arising from stray cats living in association with human habitation and estimate how many stray cats would have to be processed through a scientifically-guided TNR program to avoid high euthanasia rates. We also identify10 ethical and welfare challenges that have to be addressed: we consider the quality of life for stray cats, where they would live, whether the TNR process itself is stressful, whether TNR cats are vulnerable to injury, parasites and disease, can be medically treated, stray cats’ body condition and diet, and their impacts on people, pet cats, and urban wildlife, especially endemic fauna. We conclude that TNR is unsuitable for Australia in almost all situations because it is unlikely to resolve problems caused by stray cats or meet ethical and welfare challenges. Targeted adoption, early-age desexing, community education initiatives and responsible pet ownership have greater promise to minimize euthanasia, reduce numbers rapidly, and address the identified issues

    Gene Expression Analysis of In Vitro Cocultures to Study Interactions between Breast Epithelium and Stroma

    Get PDF
    The interactions between breast epithelium and stroma are fundamental to normal tissue homeostasis and for tumor initiation and progression. Gene expression studies of in vitro coculture models demonstrate that in vitro models have relevance for tumor progression in vivo. For example, stromal gene expression has been shown to vary in association with tumor subtype in vivo, and analogous in vitro cocultures recapitulate subtype-specific biological interactions. Cocultures can be used to study cancer cell interactions with specific stromal components (e.g., immune cells, fibroblasts, endothelium) and different representative cell lines (e.g., cancer-associated versus normal-associated fibroblasts versus established, immortalized fibroblasts) can help elucidate the role of stromal variation in tumor phenotypes. Gene expression data can also be combined with cell-based assays to identify cellular phenotypes associated with gene expression changes. Coculture systems are manipulable systems that can yield important insights about cell-cell interactions and the cellular phenotypes that occur as tumor and stroma co-evolve

    Sounds Scary? Lack of Habituation following the Presentation of Novel Sounds

    Get PDF
    Animals typically show less habituation to biologically meaningful sounds than to novel signals. We might therefore expect that acoustic deterrents should be based on natural sounds

    Body Size and Bite Force of Stray and Feral Cats - Are Bigger or Older Cats Taking the Largest or More Difficult to Handle Prey

    Get PDF
    As carnivorans rely heavily on their head and jaws for prey capture and handling, skull morphology and bite force can therefore reflect their ability to take larger or more difficult-to-handle prey. For 568 feral and stray cats (Felis catus), we recorded their demographics (sex and age), source location (feral or stray) and morphological measures (body mass, body condition); we estimated potential bite force from skull measurements for n = 268 of these cats, and quantified diet composition from stomach contents for n = 358. We compared skull measurements to estimate their bite force and determine how it varied with sex, age, body mass, body condition. Body mass had the strongest influence of bite force. In our sample, males were 36.2% heavier and had 20.0% greater estimated bite force (206.2 ± 44.7 Newtons, n = 168) than females (171.9 ± 29.3 Newtons, n = 120). However, cat age was the strongest predictor of the size of prey that they had taken, with older cats taking larger prey. The predictive power of this relationship was poor though (r2 \u3c 0.038, p \u3c 0.003), because even small cats ate large prey and some of the largest cats ate small prey, such as invertebrates. Cats are opportunistic, generalist carnivores taking a broad range of prey. Their ability to handle larger prey increases as the cats grow, increasing their jaw strength, and improving their hunting skills, but even the smallest cats in our sample had tackled and consumed large and potentially ‘dangerous’ prey that would likely have put up a defence

    Autotomy, tail regeneration and jumping ability in Cape dwarf geckos (Lygodactylus capensis) (Gekkonidae)

    Get PDF
    Many studies have examined the effect of caudal autotomy on speed and behaviour of lizards escaping over horizontal surfaces, but there have been few studies on lizards escaping over vertical surfaces and, in particular, species that jump between surfaces.We examined jumping by the Cape dwarf gecko (Lygodactylus capensis) in terms of individuals’ varying states of tail autotomy and regeneration. Although longer jumps were less likely to be successful (i.e. the animal would not successfully grip the surface and fell to the ground), there was no difference in the distance over which animals with full and partial tails would attempt to jump. Both recently autotomized individuals and individuals with intact tails successfully jumped up to nine times their body length (snout–vent length). The jumping ability of L. capensis was therefore clearly not negatively impaired by tail loss, presumably because the geckos are using their hind legs to propel their jump. Their tails may, however, be important to control their landing as well as their locomotion on vertical surfaces. The high observed frequency of tail loss, coupled with rapid and complete regeneration (including the scansorial tail tip), suggests that caudal autotomy is an important survival tactic in this species.The University of Pretoria and Murdoch University.http://www.bioone.org/loi/afzoab201

    Bioturbation by echidna (Tachyglossus aculeatus) in a forest habitat, South-Western Australia

    Get PDF
    Bioturbation by digging animals is important for key forest ecosystem processes such as soil turnover, decomposition, nutrient cycling, water infiltration, seedling recruitment, and fungal dispersal. Despite their widespread geographic range, little is known about the role of the short-beaked echidna (Tachyglossus aculeatus) in forest ecosystems. We measured the density and size of echidna diggings in the Northern Jarrah Forest, south-western Australia, to quantify the contribution echidna make to soil turnover. We recorded an overall density of 298 echidna diggings per hectare, 21 % of which were estimated to be less than 1 month old. The average size of digs was 50 ± 25 mm in depth and 160 ± 61 mm in length. After taking into account seasonal digging rates, we estimated that echidnas turn over 1.23 tonnes of soil ha-1 year-1 in this forest, representing an important role in ecosystem dynamics. Our work contributes to the growing body of evidence quantifying the role of these digging animals as critical ecosystem engineers. Given that the echidna is the only Australian digging mammal not severely impacted by population decline or range reduction, its functional contribution to health and resilience of forest ecosystems is increasingly important due to the functional loss of most Australian digging mammals

    Salt intake and regulation in two passerine nectar drinkers : whitebellied sunbirds and New Holland honeyeaters

    Get PDF
    Avian nectarivores face the dilemma of having to conserve salts while consuming large volumes of a dilute, electrolyte-deficient diet. This study evaluates the responses to salt solutions and the regulation of salt intake in whitebellied sunbirds (Cinnyris talatala) and New Holland honeyeaters (Phylidonyris novaehollandiae). Birds were first offered a choice of four sucrose diets, containing no salt or 25, 50 or 75 mM NaCl. The experiment was repeated using five sucrose concentrations (0.075 to 0.63 M) as the base solution. Both species ingested similar amounts of all diets when fed the concentrated base solutions. However, when birds had to increase their intake to obtain enough energy on the dilute sucrose diets, there was a general avoidance of the higher salt concentrations. Through this diet switching, birds maintained constant intakes of both sucrose and sodium; the latter may contribute to absorption of their sugar diets. A second, no-choice experiment was designed to elucidate the renal concentrating abilities of these two nectarivores, by feeding them 2 0.63 M sucrose containing 5-200 mM NaCl over a 4 h trial. In both species, cloacal fluid osmolalities increased with diet NaCl concentration, but honeyeaters tended to retain ingested Na+, while sunbirds excreted it. Comparison of Na+ and K+ concentrations in ureteral urine and cloacal fluid showed that K+, but not Na+, was reabsorbed in the lower intestine of both species. The kidneys of sunbirds and honeyeaters, like those of hummingbirds, are well suited to diluting urine; however they also appear to concentrate urine efficiently when necessary.This project was funded by the National Research Foundation of South Africa, the University of Pretoria and the Australian Research Council. The Gauteng Directorate of Nature Conservation granted permits to capture and house the sunbirds, and the Australian Department of Environment and Conservation approved our use of honeyeaters. All animal care procedures and experimental protocols adhered to institutional regulations of Murdoch University (R1137/05) and the University of Pretoria (EC013-07).http://link.springer.com/journal/360am2013ab201
    corecore