17 research outputs found

    A Comprehensive Patient-Derived Xenograft Collection Representing the Heterogeneity of Melanoma

    Get PDF
    Therapy of advanced melanoma is changing dramatically. Following mutational and biological subclassification of this heterogeneous cancer, several targeted and immune therapies were approved and increased survival significantly. To facilitate further advancements through pre-clinical in vivo modeling, we have established 459 patient-derived xenografts (PDX) and live tissue samples from 384 patients representing the full spectrum of clinical, therapeutic, mutational, and biological heterogeneity of melanoma. PDX have been characterized using targeted sequencing and protein arrays and are clinically annotated. This exhaustive live tissue resource includes PDX from 57 samples resistant to targeted therapy, 61 samples from responders and non-responders to immune checkpoint blockade, and 31 samples from brain metastasis. Uveal, mucosal, and acral subtypes are represented as well. We show examples of pre-clinical trials that highlight how the PDX collection can be used to develop and optimize precision therapies, biomarkers of response, and the targeting of rare genetic subgroups

    PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas

    No full text
    Targeted intervention of the B-Raf V600E gene product that is prominent in melanoma has been met with modest success. Here, we characterize the pharmacological properties of PLX4032, a next-generation inhibitor with exquisite specificity against the V600E oncogene and striking anti-melanoma activity. PLX4032 induces potent cell cycle arrest, inhibits proliferation, and initiates apoptosis exclusively in V600E-positive cells in a variety of in vitro experimental systems; follow-up xenograft studies demonstrate extreme selectivity and efficacy against melanoma tumors bearing the V600E oncoproduct. The collective data support further exploration of PLX4032 as a candidate drug for patients with metastatic melanoma; accordingly, validation of PLX4032 as a therapeutic tool for patients with melanoma is now underway in advanced human (Phase III) clinical trials

    MAPK Activation Predicts Poor Outcome and the MEK Inhibitor, Selumetinib, Reverses Antiestrogen Resistance in ER-Positive High-Grade Serous Ovarian Cancer

    No full text
    OBJECTIVE: While 67% of high grade serous ovarian cancers (HGSOC) express the estrogen receptor (ER), most fail antiestrogen therapy. Since mitogen-activated protein kinases (MAPK) activation is frequent in ovarian cancer, we investigated if estrogen regulates MAPK and if MEK inhibition (MEKi) reverses anti-estrogen resistance. METHODS: Effects of MEKi (selumetinib), anti-estrogen (fulvestrant), or both were assayed in ER+ HGSOC in vitro and in xenografts. Response biomarkers were investigated by gene expression microarray and reverse phase protein array (RPPA). Genes differentially expressed in two independent primary HGSOCs datasets with high vs low pMAPK by RPPA were used to generate a “MAPK-activated gene signature”. Gene signature components reversed by MEKi were then identified. RESULTS: High intratumor pMAPK independently predicts decreased survival (HR = 1.7, CI>95% 1.3–2.2, p=0.0009) in 408 TCGA HGSOC. A differentially expressed “MAPK-activated” gene subset was also prognostic. “MAPK-activated genes” in HGSOC differ from those in breast cancer. Combined MEK and ER blockade showed greater anti-tumor effects in xenografts than monotherapy. Gene set enrichment analysis and RPPA showed dual therapy downregulated DNA replication and cell cycle drivers, and upregulated lysosomal gene sets. Selumetinib reversed expression of a subset of “MAPK-activated genes” in vitro and/or in xenografts. Three of these genes were prognostic for poor survival (p=0.000265) and warrant testing as a signature predictive of MEKi response. CONCLUSION: High pMAPK is independently prognostic and may underlie antiestrogen failure. Data support further evaluation of fulvestrant and selumetinib in ER+ HGSOC. The MAPK-activated HGSOC signature may help identify MEK inhibitor responsive tumors

    Active Notch1 Confers a Transformed Phenotype to Primary Human Melanocytes

    No full text
    The importance of MAPK signaling in melanoma is underscored by the prevalence of activating mutations in N-Ras and B-Raf; yet, clinical development of inhibitors of this pathway has been largely ineffective, suggesting that alternative oncogenes may also promote melanoma. Notch is an interesting candidate that has only been correlated with melanoma development and progression; a thorough assessment of tumor-initiating effects of activated Notch on human melanocytes would clarify the mounting correlative evidence and perhaps identify a novel target for an otherwise untreatable disease. Analysis of a substantial panel of cell lines and patient lesions demonstrated that Notch activity is significantly higher in melanomas than their non-transformed counterparts. The use of a constitutively-active, truncated Notch transgene construct (N IC ) was exploited to determine if Notch activation is a ‘driving’ event in melanocytic transformation or instead a ‘passenger’ event associated with melanoma progression. N IC -infected melanocytes displayed increased proliferative capacity and biological features more reminiscent of melanoma such as dysregulated cell adhesion and migration. Gene expression analyses supported these observations and aided in the identification of MCAM, an adhesion molecule associated with acquisition of the malignant phenotype, as a direct target of Notch transactivation. N IC -positive melanocytes grew at clonal density, proliferated in limiting media conditions, and also exhibited anchorage-independent growth suggesting that Notch, alone, is a transforming oncogene in human melanocytes, a phenomenon not previously described for any melanoma oncogene; this new information yields valuable insight into the basic epidemiology of melanoma and launches a realm of possibilities for drug intervention in this deadly disease

    Genetic and Genomic Characterization of 462 Melanoma Patient-Derived Xenografts, Tumor Biopsies, and Cell Lines

    Get PDF
    Summary: Tumor-sequencing studies have revealed the widespread genetic diversity of melanoma. Sequencing of 108 genes previously implicated in melanomagenesis was performed on 462 patient-derived xenografts (PDXs), cell lines, and tumors to identify mutational and copy number aberrations. Samples came from 371 unique individuals: 263 were naive to treatment, and 108 were previously treated with targeted therapy (34), immunotherapy (54), or both (20). Models of all previously reported major melanoma subtypes (BRAF, NRAS, NF1, KIT, and WT/WT/WT) were identified. Multiple minor melanoma subtypes were also recapitulated, including melanomas with multiple activating mutations in the MAPK-signaling pathway and chromatin-remodeling gene mutations. These well-characterized melanoma PDXs and cell lines can be used not only as reagents for a large array of biological studies but also as pre-clinical models to facilitate drug development. : Garman et al. have characterized melanoma PDXs and cell lines described in Krepler et al. (see the related paper in this issue of Cell Reports), identifying major and minor subtypes, some of which were previously not well defined, targeted and immunotherapy resistance, and tumor heterogeneity, creating a set of reagents for future drug discovery and biological studies. Keywords: melanoma, patient-derived xenografts, massively parallel sequencing, cell line
    corecore