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major andminor subtypes, some of which
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and immunotherapy resistance, and

tumor heterogeneity, creating a set of
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biological studies.
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SUMMARY

Tumor-sequencing studies have revealed the wide-
spread genetic diversity of melanoma. Sequencing
of 108 genes previously implicated in melanoma-
genesis was performed on 462 patient-derived xe-
nografts (PDXs), cell lines, and tumors to identify
mutational and copy number aberrations. Samples
came from 371 unique individuals: 263 were naive
to treatment, and 108 were previously treated with
targeted therapy (34), immunotherapy (54), or both
(20). Models of all previously reported major mela-
noma subtypes (BRAF, NRAS, NF1, KIT, and WT/
WT/WT) were identified. Multiple minor melanoma
subtypes were also recapitulated, including mela-
nomas with multiple activating mutations in the
MAPK-signaling pathway and chromatin-remodel-
ing gene mutations. These well-characterized mela-
noma PDXs and cell lines can be used not only
as reagents for a large array of biological studies

but also as pre-clinical models to facilitate drug
development.

INTRODUCTION

Although cancer incidence overall declined in the United States

from 2002 to 2011, the incidence rates of melanoma continue to

rise (Ryerson et al., 2016). If diagnosed early, surgical resection

is curative in most melanoma patients. However, roughly 20% of

patients will developmetastatic disease.Melanoma accounts for

approximately 50,000 deaths per year worldwide, over 75% of

skin cancer-related mortality (Corrie et al., 2014). With the cost

of massively parallel sequencing technologies decreasing at a

rapid rate, precision medicine is routinely practiced, in which

the genetic profile of a patient’s melanoma is obtained and

used to guide diagnosis and treatment. This practice is particu-

larly valuable for melanoma due to the malignancy’s severity and

the availability of effective targeted therapies for common muta-

tions (Robert et al., 2015).

Melanoma is characterized by constitutive activation of

the mitogen-activated protein kinase (MAPK)- and/or
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phosphoinositide 3-kinase (PI3K)-signaling pathways and

disruption of the cell cycle. Approximately 45% of melanomas

harbor an activating mutation affecting codon 600 of the

serine/threonine-protein kinase BRAF (BRAF V600E), against

which targeted inhibitors (BRAFis) were developed (Davies

et al., 2002; Chapman et al., 2011; Krepler et al., 2016).

BRAFis provide clinical benefit to a large percentage of

advanced melanoma patients whose tumors harbor a BRAF

V600E mutation. However, median progression-free survival

is approximately 6 months (Chapman et al., 2011; Hauschild

et al., 2012). Combining BRAFi with MEK inhibitor (MEKi)

therapy increases responses rates and approximately doubles

median progression-free survival (Robert et al., 2015). Never-

theless, drug resistance is still a major hurdle in the long-term

management of melanoma with targeted therapies (Wagle

et al., 2014). Simultaneously, immune checkpoint inhibitors

have been increasingly used for melanoma treatment. These

agents (anti-CTLA-4, anti-PD-1, and anti-CTLA-4/anti-PD1)

have demonstrated increasing rates of responses in clinical

trials, many of which are durable (i.e., >2 years) (Larkin

et al., 2015). Targeted and immunotherapy combinations are

currently being explored.

In recent years, several large-scale massively parallel

sequencing studies have provided valuable insights into the ge-

netics of melanoma. Initial whole-exome sequencing studies

demonstrated that NF1, ARID2, PPP6C, RAC1, SNX31,

TACC1, and STK19 are significantly mutated genes inmelanoma

(Hodis et al., 2012; Krauthammer et al., 2012). The Cancer

Genome Atlas Skin CutaneousMelanoma (SKCM-TCGA) exome

sequencing dataset identified several additional significantly

mutated melanoma genes, namely, MAP2K1, IDH1, RB1, and

DDX3X (Cancer GenomeAtlas Network, 2015). The same groups

classified melanomas into genetic subtypes as follows: BRAF

mutant, RAS mutant, NF1 mutant, and the triple wild-type

(WT/WT/WT). Rare, low-frequency, driver mutations were identi-

fied in the WT/WT/WT subtype in KIT, CTNNB1, GNA11, and

GNAQ. Additionally, an apparent increase in copy number varia-

tion (CNV) frequency in WT/WT/WT, particularly copy number

amplifications, was detected in driver genes. Further, whole-

exome sequencing studies revealed that NF1 mutant mela-

nomas frequently carry additional mutations in other MAPK-

signaling pathway genes (Krauthammer et al., 2015; Arafeh

et al., 2015).

As sequencing of patient tumors continues to reveal the wide-

spread genetic variability of melanomas, there is a critical need

for genetically annotated melanoma translational models that

accurately recapitulate the biology andmolecular characteristics

of the patient’s original tumor for use in pre-clinical studies to

develop personalized treatment strategies. We sequenced

genes previously implicated in melanomagenesis to evaluate

mutations and copy number changes in 115 human melanoma

cell lines, 248 patient-derived xenografts (PDXs), 31 cell lines

derived from PDXs (PDX CLs), and 68 patient tumors (462 sam-

ples total). Of the patients with melanoma, 263 were treatment

naive and 54 were previously exposed to immunotherapy with

anti-CTLA-4 or anti-PD-1, 34 to targeted therapy with BRAFi

and/or MEKi, and 20 to a combination of targeted and

immunotherapy.

RESULTS

Demographic and Clinicopathological Characteristics
of Sequenced Cell Lines, PDXs, Patient Tumors, and
PDX CLs
Sequencing was performed on cell lines, PDXs, and patient tu-

mors. Of 115 Wistar Melanoma cell lines generated at the Wistar

Institute, partial characterization has been reported on a subset

(Hoek et al., 2006; Lin et al., 2008), and 31 additional lines were

developed from PDX models. A further 314 tumor samples rep-

resenting 253 individuals were either made into PDXs or directly

sequenced from patients treated at the University of Pennsylva-

nia (UPENN, 112), MD Anderson Cancer Center (MDACC, 86),

Massachusetts General Hospital (23), Helen F. Graham Cancer

Center (17), Jefferson (2), John Wayne Cancer Institute (8), Wills

Eye Institute (4), and University of Duisburg-Essen (1). Three pa-

tients (1%) had stage II melanoma, 34 (7%) patients had stage III,

106 (42%) patients had stage IV, and for 115 (45%) the patient’s

stage at biopsy was unknown. Clinicopathological characteris-

tics are summarized in Table S1; further details can be found in

the companion paper (Krepler et al., 2017). Twenty-two samples

(6% of unique cohort) were non-cutaneous melanomas, with

mucosal (10, 3%), acral cutaneous (7, 2%), and uveal (5, 1%) pri-

maries included.

Variability among Cell Lines, PDXs, PDX CLs, and
Patient Tumors
Tumors were sequenced on a custom capture panel of 108

genes (MEL V1) known to be important in melanomagenesis

(Table S2). The full genes (exons and introns) were sequenced

for tumor suppressors to facilitate copy number calling, with a

few exceptions. Exons only were sequenced for oncogenes.

We developed an in-house annotation pipeline to classify

variants as deleterious, likely deleterious, and of unknown

significance (see the Experimental Procedures and Figure S1).

Variants and copy number alterations (CNAs) were identified in

all 108 targeted genes. A subset (101) was sequenced on a

119-gene panel (MEL V2) (Table S3); 106 genes were shared

with MEL V2. Of 101 samples (36 unique patients), 45 were

sequenced on both panels, enriched for non-BRAF V600E/K/D

and non-NRASQ61mutant samples. The deleterious/likely dele-

terious variant concordance rates of MEL V1 and MEL V2 were

94% (217 of 231 MEL V1 variants found on MEL V2) and 97%

(217 of 223 MEL V2 variants found on MEL V1) (Figure S2).

Testing results for mutations in themajor driver melanoma genes

(BRAF, RAS, NF1, and KIT) did not differ.

Following variant calling, all 115 cell lines harbored at least one

deleterious mutation, compared to 236 of 248 PDXs (95%), 30 of

31 PDX CL (97%) samples, and 59 of 68 patient tumors (87%).

Likely deleterious mutations were found in 69 of 115 cell lines

(60%), 168 of 248 PDXs (67%), 18 of 31 PDX CLs (58%), and

36 of 68 patient tumors (53%). Variants of unknown significance

(VUSs) were found in 103 of 114 cell lines (90%), 222 of 248 PDXs

(93%), 27 of 31 PDX CLs (87%), and 55 of 68 patient tumors

(81%). Table S5 lists all called variants in our cohort. Among all

four sample types, the total number of calls (deleterious/likely

deleterious/VUS) did not differ significantly (Figure 1B). However,

the alternate allele fractions (AAFs) of variants detected across

Cell Reports 21, 1936–1952, November 14, 2017 1937
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Figure 1. Variability among Four Different Sample Types (PDX CL, PDX, Patient Tumor, and Cell Line)

(A) Average number of deleterious variants detected per sample.

(B) Average number of total filtered variants detected per sample.

(C) Allelic fractions across the four sample types.

(D) Major subtypes (BRAF hotspot, RAS hotspot, NF1 hotspot, and WT/WT/WT) and their differential distribution among the entire cohort.
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all sample types were statistically significant different (p = 2.2 3

10�16). Patient tumors had the lowest AAF, presumably due to

admixture with non-tumor cells, and PDX CLs had the highest

AAF (Figure 1C).

We compared the prevalence of common mutations across

the four sample types. In the samples from the 371 unique indi-

viduals, 203 (55%) had mutations in BRAF, 72 (19%) in RAS

(NRAS and KRAS), and 22 (6%) inNF1 (Figure 1D). As discussed

in detail below, some samples hadmutations in more than one of

these genes, and for this purpose they were included in the most

prevalent mutation group (e.g., those with BRAF and RASmuta-

tions in theBRAFmutant group and thosewithRAS andNF1mu-

tations in the RAS group). Seventy-four samples (20%) did not

have mutations in the above genes (WT/WT/WT); 14 WT/WT/

WT were non-cutaneous melanomas (acral [1, 1%], mucosal

[9, 12%], or uveal [4, 6%]). For nine WT/WT/WT tumor biopsies,

the sample provided may have been normal tissue, as we only

identified one to three VUSs at 50% allele frequency in each;

four did not grow in mice and five have not been tested for

growth. Cell lines had a higher prevalence of both deleterious

BRAF and RAS mutations than PDXs and patient tumors (p =

0.05; Figure 1D). CDKN2Amutations and homozygous deletions

occurred at a higher frequency (74, 68%) in cell lines, compared

to 104 (52%) PDXs and 14 (24%) tumors (p = 3.3 3 10�7). TP53

mutations and homozygous deletions also occurred at a higher

frequency in cell lines (34%), as compared to PDXs (23%) and tu-

mors (21%), but not significantly. The distribution of mutations in

PDXs and tumors was reflective of what has been reported pre-

viously (Cancer Genome Atlas Network, 2015). In contrast, cell

lines were significantly more likely to be BRAF or RAS mutant

with loss of CDKN2A, likely reflecting difficulties establishing

cell lines from NF1 mutant or WT tumors.

Prevalence of Gene Mutations and Predicted Copy
Number Changes
Among all sequenced samples (462), we identified deleterious/

likely deleterious mutations in 101 of 108 genes. To summarize

the prevalence of gene mutations, the percentage of unique pa-

tients (371) was calculated. Deleterious mutations were most

prevalent in our cohort in the following genes: TERT promoter

region (215, 62.5% of all samples), BRAF (200, 58.1%), NRAS

(81, 23.51%), TP53 (63, 18.3%), CDKN2A (49, 14.2%), NF1

(35, 10.2%),ARID2 (28, 8.1%), andPTEN (20, 5.8%) (Figure S3A).

Likely deleterious mutations were most frequently detected

in the following: DCC (32, 19% of all samples), GRM3 (30,

17.9%), PTPRP (19, 11.3%), PREX2 (19, 11.3%), GRIN2A (19,

10%), and PTEN (17, 10.1%) (Figure S3B). Variants were not de-

tected in CD274, MDM4, SDHD, or SMARCB1.

Of the 371 unique samples, 294 unique samples (79%) had a

homozygous loss or high amplification in at least one gene.

The mean (and range) of the number of highly amplified (copy

number > 3.3) and homozygously deleted genes per sample

was 1 (0 to 5) and 2 (0 to 8), respectively. The most frequently

highly amplified genes were the following: CDK6 (91, 30%),

MET (79, 26.1%), DDX3X (69, 22.8%), BRAF (68, 22.4%),

DYNC1I1 (55, 18.2%), EZH2 (51, 16.8%), MITF (49, 16.2%),

MYC (45, 14.9%), PREX2 (45, 14.9%), STK19 (43, 14.2%), and

NOTCH2 (30, 10%) (Figure S3C). The genes most frequently

homozygously deleted were the following: CDKN2A (130,

65.3%), CDKN2B (102, 51.3%), PTEN (47, 23.6%), and TP53

(12, 6%) (Figure S3D). A complete list of CNAs can be found in

Table S6.

MAPK-Signaling Pathway Mutations
The mutational landscape of our samples revealed two distinct

patterns of mutations within the MAPK-signaling pathway: (1)

single-hotspot BRAF or NRAS mutations; and (2) multiple non-

hotspot variants across different genes encoding proteins within

the MAPK-signaling pathway, including NF1 mutations. Across

our naive and immunotherapy cohort (317 patients, 85% of

unique cohort), 206 melanomas representing unique individuals

(65% of naive and immunotherapy cohort) followed pattern 1;

148 had solitary driver mutations in BRAF (72%) and 58 (28%)

in NRAS. Pattern 2 melanomas representing 52 unique individ-

uals (14% of unique; 16% of naive and immunotherapy cohort)

had more than one deleterious or likely deleterious mutation in

either an MAPK-signaling gene or in a gene encoding an effector

protein of theMAPK pathway, as shown in Table 1. Three pattern

2 samples were acral (2) and mucosal (1). Eighteen samples

harbored a deleterious or likely deleterious non-V600 BRAF

mutation (p.H57Y, p.G464E, p.S465Y, p.G466E, p.G469E,

p.L496V, p.N581S, p.N581Y, p.D594G, p.V624F, p. K601E,

and p.600_601del) (Figure S4). We also noted an additional

six non-V600 BRAF mutations, which we designated as VUSs

but that may have functional significance (p.G7S, p.F294L,

p.S365L, p.S365L, p.A497V, and p.T740A). We also identified

five BRAF non-V600 variants (p.G9A, p.L505H, p.P318S,

p.P328S, and p.A366P) in samples also carrying V600E muta-

tions, which are less likely to be functional. All non-V600 BRAF

mutations had concurrent deleterious/likely deleterious muta-

tions or high-level amplifications in other MAPK-signaling genes.

Co-occurring RAS deleterious mutations were most frequent,

found in 60% of non-hotspot BRAF mutant samples as

compared to 2%, 6.3%, and 21.5% of those with BRAF

V600E, V600K, and other BRAF hotspot mutations, respectively

(p < 0.0001). Most melanomas had a single second deleterious

mutation in a MAPK-signaling gene; a few had three. We identi-

fied concurrent mutations or amplifications in other MAPK-

signaling pathway genes in allBRAF non-V600 codonmutations,

except for one, which had incomplete sequencing.

Twenty-three RAS mutants had co-occurring mutations in the

MAPK-signaling pathway (Table 1; Figure S4), and, therefore,

they fell into pattern 2, compared to 58 pattern 1 RAS mutant

samples (53, 91% Q61; 5, 9% non-Q61). Eleven Q61 (17%

of all Q61) and 13 non-Q61 (75% of all non-Q61) mutated mela-

noma samples harbored additional mutations in the MAPK-

signaling pathway (p = 2.2 3 10�16 for enrichment of non-Q61

mutations). Of the 30 NF1-mutated melanomas, 26 (87%)

harbored concurrent deleterious/likely deleterious MAPK-

signaling pathway mutations (Table 1). Two of the remaining

four NF1-mutated melanomas had VUSs in MAP3K5 (WM4242

also had a deleterious mutation in ROS1 [c.780-1G > A]). Of

the four possible mutations observed in RASA2 (one truncating

and three likely deleterious missense), only two were observed

in NF1 mutant samples. Four of nine (44%) KIT mutant

samples also carried concurrent MAPK pathway mutations.

Cell Reports 21, 1936–1952, November 14, 2017 1939



Four wild-type (WT/WT/WT) samples in this cohort harbored

likely deleterious and deleterious mutations in MAP2K1/2 and

MAP3K5, including one with a truncating deleterious mutation

in MAP3K5 (p.E477X) (Figure S5).

Genetic/Genomic Landscape of Sequenced Naive
Melanoma Cell Lines, PDXs, PDX CLs, and Patient
Tumors
Deleterious mutations, homozygous losses, and high-level copy

number amplifications in the 225 naive-to-treatment samples

are shown in Figure 2; only one sample from each patient is

included. Likely deleterious mutations and other genomic aber-

rations also are included in Figure S6. As deleterious TERT

promoter mutations (Table S4) were detected in 67% of sam-

ples, and ubiquitously in all subtypes, they are not included in

Figures 2 and S6A.

Within BRAF-V600E mutant treatment-naive samples, we

observed previously well-described subtypes. Of 105, 44

(42%) BRAF V600E-mutated samples from unique patients

harbored truncating and/or deleterious missense mutations in

cell cycle genes (CDKN2A, CDK4, and/or TP53). The remaining

61 (58%) BRAF V600E-mutated samples had more frequent

homozygous loss of CDKN2A/B (46% versus 25%; p = 0.03),

but not PTEN (25% versus 11%). Homozygous deletions in

PTEN occurred almost exclusively in BRAF V600E samples

(91%) (p < 0.0001). Within the subset of BRAF V600E-mutated

samples lacking additional CDKN2A, CDK4, and/or TP53 muta-

tions, 10 samples (9.5% of unique patients) lacked the C > T

nucleotide substitution pattern characteristic of UV sun dam-

age (Brash, 2015), possibly due to low mutation burden. NF1

mutant samples had the highest overall mutational burden of

all subtypes (p = 1 3 10�6), the majority of which were C > T

transitions. Of 11 NF1 mutant samples from unique patients,

seven samples (64%) harbored a deleterious mutation in

TP53, more frequently than in other subtypes (p = 0.003). Ten

of 29 WT/WT/WT (34.5%) harbored previously reported rare

mutations in GNAQ, GNA11, and CTNNB1, in a mutually exclu-

sive fashion, six of which were uveal PDX and cell lines. A

further two WT/WT/WT samples (7%) were acral and mucosal

melanomas.

Multiple samples displayed high-level copy number amplifi-

cations. Of 27, 19 (70%) high amplifications in MITF occurred

in BRAF V600E-mutated samples. Of the 12 co-occurrences

of high amplification in FGF3/4 and/or CCND1, nine (75%)

also harbored high amplification in MITF. FGF3, FGF4, and

CCND1 are co-localized at 11q13.3, explaining co-occur-

rence, whereas MITF is on chromosome 3, suggesting a

synergistic effect. Of 31, 25 (80.6%) concurrent amplifica-

tions in BRAF, MET, and/or EZH2 occurred in BRAF hotspot

mutant samples (p = 0.009). Three very high-level BRAF

amplification events (6- to 16-fold) were identified, two of

which were in BRAF V600K mutants. Finally, 14 of 24 (58%)

Table 1. Samples with Co-occurring Mutations in the MAPK-Signaling Pathway

Green, high-level amplification (>3.3 fold); red, deleterious mutations; blue, likely deleterious mutations; gray, samples and genes not sequenced on

the 119-gene panel; purple, loss of wild-type allele; peach, non-cutaneous melanoma.
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high-amplification events in NOTCH2 co-occurred with high

amplification in NRAS; both are on 1p. Of note, WT/WT/WT

patients harbored significantly lower numbers of CNAs

compared to hotspot BRAF and RAS subtypes (p < 1 3

10�4), but not to NF1-mutated samples.

We performed formal correlation analyses to examine co-

occurrence of copy number changes that were found in more

than 10% of samples (Figures S6B and S6C). When all samples

were considered, significant correlations were identified

between co-localized genes, such as deletion of CDKN2A/

CDKN2B (9p21.3) and amplifications of PREX2/SNX31/MYC

(8q) and BRAF/RAC1/EGFR/EZH2/GRM3/DYNC1I1/CDK6/MET

(chr 7). Significant correlations between non-co-localized genes

also were observed, with the most significant being between

MITF amplification and CDKN2A deletion (p = 0.0005),MITF and

EGFRamplifications (p=0.0005), andSTK19andAKT3amplifica-

tions (p = 2 3 10�5) (Figure S6B). The first two correlations are

due to co-enrichment in BRAF-mutated samples. Within the

BRAF mutant subset, the only correlation that emerged was

between MYC and STK19 amplifications (p = 0.0001) (Fig-

ure S6C). Little is known about STK19 in melanoma; these data

suggest further functional evaluation is warranted.

Genetic Landscape of Melanoma Cell Lines, PDXs, PDX
CLs, andPatient Tumors Exposed to Targeted Therapies
Forty-nine (54 samples) unique patients had samples taken

either post-progression (37) or on treatment (12) with targeted

therapy; 21 (43%) were treated with a combination of BRAFi

and MEKi, 27 (55%) BRAFi alone, and one MEKi alone (Fig-

ure 3A). Post-progression PDXs were expanded in vivo on a

continuous BRAFi or BRAFi/MEKi to maintain the resistance

phenotype (Krepler et al., 2016). Twenty (41%) patients received

a combination of targeted and immunotherapy.

Potential resistance mechanisms were identified for 29 of 36

(81%) patients that progressed on treatment (Figure 3B) and

classified into four categories: BRAF high-level amplifications

(10, 28%), NRAS mutant (6, 17%), MAP2K1 mutant (p.C121S,

p.K57E/N, p.P124S, and p.Q56P) (7, 19%), and non-MAPK

pathway alterations (MITF and MET high amplification and

PTEN homozygous loss) (5, 14%). Although no deleteriousmuta-

tions in MAP2K2 were identified, a VUS (p.K61E) was found in

the non-MAPK pathway-altered group, which may be associ-

ated with resistance. MAP2K2 p.K61E has been reported in a

patient with cardio-facio-cutaneous syndrome, one of the

Rasopathies, supporting a functional role (Dentici et al., 2009).

Figure 2. Mutational and Copy Number Profile of Naive Melanoma Cell Lines, PDXs, PDX CLs, and Tumors

A single sample from each of 225 unique patients is included. NMVD, no missense variants in targeted genes detected.
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A

B

Figure 3. Mutational and Copy Number Profile of PDXs, PDX CLs, and Tumors from Patients that Received Targeted Therapy with BRAFi,

MEKi, or a Combination

(A) A single sample from each of 49 unique patients is included.

(B) Five subtypes of potential resistance mechanisms in samples that progressed post-treatment.
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Additional genetic and genomic changes were observed that

alsomay contribute to therapeutic resistance (Figure 3B). Homo-

zygous loss of PTEN and high-level amplification of MET were

seen in 20% and 50% of patients with high-level amplification

of BRAF, respectively. High-level amplification of BRAF was

observed in 67% of samples also having secondary NRAS

Q61/G12 mutations, along with additional CNAs in non-MAPK

pathway genes. Themechanisms of resistance found in the sam-

ples did not differ between patients treated with BRAFi alone and

with BRAFi/MEKi.

Genetic Landscape of Melanoma Cell Lines, PDXs, PDX
CLs, and Patient Tumors from Patients Treated with
Immunotherapy
Overall, 71 unique patients (two acral) were previously exposed

to immunotherapy with anti-CTLA4 (33, 46%), anti-PD-1 (19,

27%), or anti-CTLA4/anti-PD1 (19, 27%). Twenty patients

(28%) received both immunotherapy and targeted therapy. Of

the 71 patients, eight (11%) patients were responders (one

acral), 33 (47%) had progressive disease, seven (10%) had sta-

ble disease, and one patient (1%) had a mixed response (Fig-

ure 4). Disease outcome was unknown for 22 (31%) patients

(one acral). The genetic and genomic landscape was similar

to the naive sample set, with an enrichment for non-BRAF-

mutated tumors. However, mutational burden (nonsynonymous

variants/mb) in patients that received immunotherapywas signif-

icantly higher than the naive cohort (p = 0.03).

Evaluation of Multiple Samples from the Same Patient
Multiple samples from 40 patients were sequenced, including

cell lines, PDXs, PDX CLs, and biopsies (Figure S7; Table S7).

Full mutational concordance was observed across 65 samples

from 28 (70%) patients; 35 samples from 12 patients were

discordant. In six instances, discordance could be attributed to

within-patient tumor heterogeneity, three instances to within-tu-

mor heterogeneity, one instance to the development of acquired

resistance mutations, two to acquired resistance mutations in

cell lines adapting to targeted therapy, and in two instances no

potential etiology could be identified. Discordant deleteriousmu-

tations inKRAS (p.A146T and p.K117N),PTEN, and TACC1were

found in two biopsies taken on the same day but from different

locations in a patient progressing on pembrolizumab/dabrafenib

(WM4420). One patient had a total of five biopsies at three

different time points; discordant mutations were observed in

three genes, varying over time (before and after treatment with

ipilimumab) and location (WM4295). We also observed discor-

dant mutations in five genes in biopsies taken from left and right

axillary lymph node metastases (WM4413). Further, an early-in-

transit metastasis was found to have a deleterious TP53 muta-

tion, with two subsequent biopsies from different locations, while

the patient was on BRAFi therapy for 12 months, both TP53 WT

(WM4011). Interestingly, the thick primary melanoma differed

remarkably from a residual lung metastasis after anti-CTLA4

therapy (WM4210). We also observed two instances in which

tumor grafts from the same PDX expanded in different mice

did not have the same mutational changes.

These data suggest that intra-tumoral heterogeneity can lead

to the outgrowth of several sub-clones during the propagation of

PDX, and they may explain some of the heterogeneity seen in

PDX efficacy studies (Krepler et al., 2016). Therapeutic pressures

also can lead to new mutations conferring selective growth

advantages. In the BRAF V600E mutant model WM4351, two

PDXs derived from therapy-naive biopsies were both NRAS

WT, whereas a biopsy taken after progression on BRAFi/MEKi

had an NRAS Q61K mutation. In two cases, PDXs derived

from targeted therapy-progressed patients did not demonstrate

any acquiredmutations, but theywere resistant to the same ther-

apy the patient had received when dosed in vivo. When we es-

tablished cell line cultures, they initially did not grow, but they

became resistant after several passages. Each cell line had

a resistance mutation, one in NRAS (Q61K allele frequency

0.44) and the other in MAP2K1 (C121S allele frequency 0.43)

(Table S7).

Chromatin-Remodeling Gene Mutations in Melanoma
Cell Lines, PDXs, PDX CLs, and Patient Tumors
Mutations in the genes that encode the SWI/SNF chromatin-

remodeling enzymes ARID1A (BAF250A/SMARCF1), ARID1B

(BAF250B), ARID2 (BAF200), and SMARCA4 (BRG1) have

been implicated in melanoma, as have those that encode other

chromatin organization/histone modification proteins (EZH1,

EZH2, SETD2, and TRRAP) (Hodis et al., 2012; Cancer Genome

Atlas Network, 2015). Overall, 65 of 371 (17.5%) samples from

unique patients harbored a likely deleterious/deleterious muta-

tion in at least one of the genes associated with chromatin

remodeling or chromatin organization/histone modification (Fig-

ure 5). Themost frequentlymutatedwereARID2 (23), followed by

ARID1A (13), ARID1B (7), and SMARCA4 (4). Deleterious muta-

tions in ARID2, ARID1A, and SMARC4 were mutually exclusive

(p = 2.2 3 10�16), apart from a co-occurrence of ARID2 and

SMARCA4 in one sample. However, deleterious mutations in

ARID1B were found concurrently with mutations in ARID2 (1)

and ARID1A (2). Restricting to naive samples to reduce bias,

BRAF V600E mutations were the least likely to be associated

with chromatin-remodeling genemutations (7 of 105, 7%). Chro-

matin-remodeling gene mutations were observed comparatively

frequently with BRAF V600K (3 of 15, 20%), RAS (12 of 50, 24%),

and NF1 (1 of 11, 9%) mutations (p = 0.013). One deleterious

truncating mutation was detected in EZH1; deleterious/likely

deleterious missense mutations were found in 12 EZH1/2-

mutated samples from unique patients. Rare mutually exclusive

mutations were found in SETD2 (4), TRRAP (4), IDH1 (1), and

BAP1 (1).

Comparison of Genotypes in Clinical Samples and PDXs
Clinical tumor sequencing data from 79 melanoma patients

treated at Penn Medicine or MDACC were compared to our

data (Table 2). At the Center for Personalized Diagnostics at

Penn Medicine, the TruSeq Amplicon Cancer Panel (Illumina)

was used for clinical sequencing (Hiemenz et al., 2016). At

MDACC, CMS50 (Life Technologies) was used for clinical

sequencing (Kim et al., 2017). For each patient, mutational pro-

files of PDX or tumor biopsy were compared to the clinical

mutational profile. It is important to note that, in virtually all

cases, a different sample was used for clinical sequencing

than to establish the PDX or sent as a research tumor biopsy.
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Additionally, we could only compare samples for which positive

results were found on either clinical or study sequencing in re-

gions covered by both. All deleterious mutations were deter-

mined to be such by both the site and study. However, for

six likely deleterious mutations and VUSs, the pathogenicity

calls varied.

Overall, there were 101 potentially overlapping mutations, of

which 91 (91%) were found by both the site and study. We iden-

tified eight of 63 (12.6%) samples with discordant results.

Of those, four (WM3407, WM4428, WM4462, and WM4464)

research biopsies were likely normal tissue rather than mela-

noma, as they had one to three VUSs at allelic frequencies

of 50%. For two samples (WM4433 and WM4323), although

clinical sequencing was done on a pre-treatment sample, we

sequenced a post-treatment sample and identified presumably

de novo resistance mutations. In one sample (WM4279), we

Figure 4. Mutational and Copy Number Profile of PDXs, PDX CLs, and Tumors from Patients that Received Immunotherapy with Anti-

CTLA-4, Anti PD-1, or a Combination

A single sample from each of 49 unique patients is included. NMVD, no missense variants in targeted genes detected.
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identified a KIT p.L576P mutation not found in the clinical sam-

ples. Of the 16 UPENN samples with sequencing of a clinical

sample and PDX, we only found one (6%) with discrepant re-

sults; interestingly, we each found different truncating mutations

in PTEN. We observed that mutations tended to have higher

allele frequencies in the PDX, as compared to clinical

sequencing, which could be due to either admixture in the orig-

inal tumor or loss of the wild-type allele during establishment of

the PDX, which we have observed for ovarian cancer PDX

(George et al., 2017).

Figure 5. Mutational and Copy Number Profile in Unique Patient Cell Lines and PDXs with a Likely Deleterious/Deleterious Mutation in

Chromatin-Remodeling Genes, which Reveals Mutual Exclusivity of Mutations
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Table 2. Results from Clinical and Study Sequencing of Samples from the Same Patient

Sample ID Sample Type

Clinical

Site Gene NT Change

Site Variant

Call

Study

Variant Call

Percentage

Tumor

Tumor

AF (%)

PDX

AF (%)

Percentage

Increase Concordance

WM4428 patient biopsy MDACC BRAF c.T1799A:p.V600E deleterious – – discordant

WM4433 patient biopsy MDACC BRAF c.T1799A:p.V600E deleterious deleterious 22.6 concordant

WM4433 patient biopsy MDACC NRAS c.A182G:p.Q61R – deleterious 32.5 discordant

WM4435 patient biopsy MDACC BRAF c.T1799A:p.V600E deleterious deleterious 28.4 concordant

WM4437 patient biopsy MDACC BRAF c.GT1798_1799AA:p.V600K deleterious deleterious 33.7 concordant

WM4444 patient biopsy MDACC BRAF c.GT1798_1799AA:p.V600K deleterious deleterious 90 concordant

WM4449 patient biopsy MDACC BRAF c.T1799A:p.V600E deleterious deleterious 56.9 concordant

WM4462 patient biopsy MDACC BRAF c.T1799A:p.V600E deleterious – – discordant

WM4464 patient biopsy MDACC BRAF c.T1790G:p.L597R deleterious – – discordant

WM4472 patient biopsy MDACC BRAF c.T1799A:p.V600E deleterious deleterious 44.3 concordant

WM4478 patient biopsy MDACC BRAF c.A1801G:p.K601E deleterious deleterious 42.4 concordant

WM4487 patient biopsy MDACC BRAF c.T1799A:p.V600E deleterious deleterious 52.1 concordant

WM4494 patient biopsy MDACC BRAF c.GT1798_1799AA:p.V600K deleterious deleterious 29.2 concordant

WM4500 patient biopsy MDACC BRAF c.T1799A:p.V600E deleterious deleterious 53.8 concordant

WM4508 patient biopsy MDACC BRAF c.1799_1801del:p.600_601del deleterious deleterious 36.4 concordant

WM4515 patient biopsy MDACC NRAS c.A182G:p.Q61R deleterious deleterious 50.8 concordant

WM4528 patient biopsy MDACC NRAS c.C181A:p.Q61K deleterious deleterious 41.8 concordant

WM4530 patient biopsy MDACC NRAS c.A182G:p.Q61R deleterious deleterious 48 concordant

WM4532 patient biopsy MDACC BRAF c.T1799A:p.V600E deleterious deleterious 47.5 concordant

WM4542 patient biopsy MDACC NRAS c.A182G:p.Q61R deleterious deleterious 46.2 concordant

WM4545 patient biopsy MDACC BRAF c.T1799A:p.V600E deleterious deleterious 44.6 concordant

WM4553 patient biopsy MDACC BRAF c.T1799A:p.V600E deleterious deleterious 49.4 concordant

WM4558 patient biopsy MDACC BRAF c.T1799A:p.V600E deleterious deleterious 47.7 concordant

WM3407 PDX MDACC BRAF c.G1397A:G466E deleterious ND – discordant

WM3407 PDX MDACC ATM c.T728C:p.L243S VUSz VUS 48.1 concordant

WM4218 PDX MDACC KIT c.T1669C:p.W557R deleterious deleterious 47.1 concordant

WM4249 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 61.7 concordant

WM4257 PDX MDACC NRAS c.C181A:p.Q61K deleterious deleterious 75 concordant

WM4257 PDX MDACC TP53 c.G629A:p.R210K deleterious deleterious 100 concordant

WM4258 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 48.1 concordant

WM4260 PDX MDACC KIT c.A1924G:p.K642E deleterious deleterious 78.3 concordant

WM4260 PDX MDACC CTNNB1 c.C134T:p.S45F deleterious deleterious 49.9 concordant

WM4262 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 99.8 concordant

WM4264 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 64.7 concordant

WM4265-1 PDX MDACC NRAS c.C181A:p.Q61K deleterious deleterious 96.8 concordant

WM4265-1 PDX MDACC TP53 c.C380T:p.S127F deleterious deleterious 98 concordant

(Continued on next page)
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Table 2. Continued

Sample ID Sample Type

Clinical

Site Gene NT Change

Site Variant

Call

Study

Variant Call

Percentage

Tumor

Tumor

AF (%)

PDX

AF (%)

Percentage

Increase Concordance

WM4267 PDX MDACC BRAF c.T1799A:p.V600E deleterious ND – discordant

WM4267 PDX MDACC CDKN2A c.G159C:p.M53I VUS VUS 55.1 concordant

WM4276 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 0.61 concordant

WM4279 PDX MDACC KIT c.T1727C:p.L576P ND deleterious 86.6 discordant

WM4280 PDX MDACC BRAF c.GT1798_1799AA:p.V600K deleterious deleterious 47.6 concordant

WM4285 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 42.2 concordant

WM4286-1 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 0.59 concordant

WM4292 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 48.6 concordant

WM4295 PDX MDACC NRAS c.A182T:p.Q61L deleterious deleterious 96.3 concordant

WM4299-1 PDX MDACC NRAS c.A182T:p.Q61L deleterious deleterious 0.93 concordant

WM4306 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 25.2 concordant

WM4323 PDX MDACC BRAF c.T1799A:p.V600E deleterious – – discordant

WM4323 PDX MDACC MAP2K1 c.1029dupA:p.I343fs NCy deleterious 46.2 discordant

WM4335 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 28.7 concordant

WM4345 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 61 concordant

WM4345 PDX MDACC CDKN2A c.C238T:p.R80X deleterious deleterious 84 concordant

WM4351 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 75.5 concordant

WM4353 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 57 concordant

WM4367 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 51.2 concordant

WM4369 PDX MDACC NRAS c.G38A:p.G13D deleterious deleterious 65.6 concordant

WM4370 PDX MDACC BRAF c.GT1798_1799AA:p.V600K deleterious deleterious 92.7 concordant

WM4380 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 30.7 concordant

WM4382 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 48.6 concordant

WM4388 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 47 concordant

WM4388 PDX MDACC TP53 c.C520T:p.R174X deleterious deleterious 91.3 concordant

WM4389 PDX MDACC NRAS c.G37C:p.G13R deleterious deleterious 73.1 concordant

WM4404 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 67.7 concordant

WM4408 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 74.1 concordant

WM4420 PDX MDACC BRAF c.GT1798_1799AA:p.V600K deleterious deleterious 87.7 concordant

WM4420 PDX MDACC CTNNB1 c.C134T:p.S45F deleterious deleterious 65 concordant

WM4420 PDX MDACC FBXW7 c.C1321T:p.R441W deleterious deleterious 52.6 concordant

WM4426 PDX MDACC NRAS c.A182G:p.Q61R deleterious deleterious 84.5 concordant

WM4430 PDX MDACC NRAS c.A182G:p.Q61R deleterious deleterious 100 concordant

WM4442 PDX MDACC NRAS c.C181A:p.Q61K deleterious deleterious 95.7 concordant

WM4445 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 56.7 concordant

WM4451 PDX MDACC NRAS c.G35A:p.G12D deleterious deleterious 87.4 concordant

(Continued on next page)
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Table 2. Continued

Sample ID Sample Type

Clinical

Site Gene NT Change

Site Variant

Call

Study

Variant Call

Percentage

Tumor

Tumor

AF (%)

PDX

AF (%)

Percentage

Increase Concordance

WM4454 PDX MDACC TP53 c.T708G:p.C236W deleterious deleterious 100 concordant

WM4454 PDX MDACC BRAF c.T1799A:p.V600E deleterious deleterious 45.3 concordant

WM4465 PDX MDACC BRAF c.GT1798_1799AA:p.V600K deleterious deleterious 29.2 concordant

WM3901 PDX UPENN BRAF c.T1799A:p.V600E deleterious deleterious 44 67.05 84.9 26.6 concordant

WM4011 PDX UPENN BRAF c.GT1798_1799AA:p.V600K deleterious deleterious 26�50 13.82 76.6 454.3 concordant

WM4042 PDX UPENN NRAS c.A182G:p.Q61R deleterious deleterious >50 34.26 98.9 188.7 concordant

WM4068 PDX UPENN BRAF c.G1406A:p.G469E deleterious deleterious >50 35 47 34.2 concordant

WM4068 PDX UPENN KRAS c.G35A:p.G12D deleterious deleterious >50 61.1 73.7 20.6 concordant

WM4206 PDX UPENN BRAF c.GT1798_1799AA:p.V600K deleterious deleterious >50 35.06 65.6 87.1 concordant

WM4208 PDX UPENN NRAS c.A182G:p.Q61R deleterious deleterious >50 19.13 64 234.6 concordant

WM4224 PDX UPENN NRAS c.A182G:p.Q61R deleterious deleterious 44 10.14 47.7 370.4 concordant

WM4224 PDX UPENN TP53 c.C211T:p.R71C deleterious deleterious 44 12.03 57.6 378.8 concordant

WM4224 PDX UPENN CTNNB1 c.A121G:p.T41A deleterious deleterious 44 28.5 98.8 246.7 concordant

WM4231 PDX UPENN RET c.C2672T:p.S891L VUS likely deleterious >50 25.68 50.2 95.5 concordant

WM4231 PDX UPENN NRAS c.A182G:p.Q61R deleterious deleterious >50 30.25 52.5 73.6 concordant

WM4237 PDX UPENN RB1 c.2069_2082del:p.N690fs deleterious deleterious 26�50 38.41 73.8 92.1 concordant

WM4237 PDX UPENN BRAF c.T1799A:p.V600E deleterious deleterious 26�50 21.21 76.3 259.7 concordant

WM4237 PDX UPENN TP53 c.C722T:p.S241F deleterious deleterious 26 �50 40.62 99.2 144.2 concordant

WM4240 PDX UPENN SMAD4 c.G1399C:p.G467R VUS likely deleterious 100 43.33 41.7 – concordant

WM4243 PDX UPENN BRAF c.T1799A:p.V600E deleterious deleterious >50 41.06 50.1 22.0 concordant

WM4298 PDX UPENN KIT c.T1688A:p.I563K likely deleterious VUS >50 61.05 98 60.5 concordant

WM4298 PDX UPENN BRAF c.T1799A:p.V600E deleterious deleterious >50 50.9 98.8 94.1 concordant

WM4314 PDX UPENN FGFR2 c.811_812delinsAA:p.G271K likely deleterious likely deleterious >50 34.96 46.2 – discordant

WM4349 PDX UPENN BRAF c.T1799A:p.V600E deleterious deleterious 26�50 24.63 51.8 110.3 concordant

WM4364 PDX UPENN BRAF c.T1799A:p.V600E deleterious deleterious >50 42.91 55.6 29.6 concordant

WM4364 PDX UPENN PTEN c.208_209+1del deleterious ND >50 72.59 ND – discordant

WM4364 PDX UPENN PTEN c.727_728del:p.L243fs ND deleterious >50 ND 78.5 – discordant

WM4543 PDX UPENN KDR c.G4066T:p.V1356F VUS VUS 26�50 6.84 44 543.3 concordant

WM4543 PDX UPENN BRAF c.T1799A:p.V600E deleterious deleterious 26�50 6.4 40.4 531.3 concordant

ND, not detected; NC, not captured; VUS, variant of uncertain significance.
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DISCUSSION

In this era of precision medicine, pre-clinical drug development

of targeted oncology therapeutics relies heavily on models of

cancer that have been shown to be representative of the genetic

profile of the patient’s tumor. Herein, we demonstrate that tar-

geted massively parallel sequencing of 108/119 genes previ-

ously implicated in melanomagenesis, followed by our custom

analysis pipelines for mutational and CNV calling, is a reliable

method for characterizing the genetic and genomic landscape

of melanoma cell lines, tumors, PDXs, and PDX CLs. To account

for the lack of matched normal samples, control samples were

sequenced in each lane for normalization for copy number call-

ing and to identify common variants, which were subtracted

out. We also removed sequences that more closely aligned to

the mouse than human genome to decrease cross-contamina-

tion and increase accuracy of mutational and copy number

calling. We used an in-house-developed pipeline to classify mu-

tations or variants as deleterious, likely deleterious, and VUS,

incorporating information from the literature and Catalogue of

Somatic Mutations in Cancer (COSMIC), mutational type, loca-

tion, and effect, after filtering for a maximum population fre-

quency greater than or equal to 0.1% to account for the lack of

a matched normal.

We found the total number ofmutation and variant calls did not

differ significantly among cell lines, PDXs, PDX CLs, and patient

tumors, although, not surprisingly, there was a trend toward

higher mutational rates in PDXs and cell lines. We observed

significantly higher rates of BRAF and RAS mutations and

CDKN2A mutations/loss in cell lines than PDXs and tumor bi-

opsies, consistent with the growth advantage conferred by those

mutations. However, we did find cell lines representing all muta-

tional groups. We also found an extremely high concordance

rate between clinical sequencing results and our targeted

sequencing, with only two samples of 80 (2.5%) demonstrating

truly discrepant results. Taken together, the mutational profiles

observed in the melanoma cell lines, PDXs, and PDX CLs

sequenced in this study are an accurate genetic and genomic

representation of the patient’s original tumor. We also identified

all major previously reported melanoma subtypes, as well as the

full spectrum of mutations and copy number aberrations, at

roughly the same frequencies identified in large-scale original

patient tumor/normal sequencing studies (Berger et al., 2012;

Hodis et al., 2012; Krauthammer et al., 2015; Cancer Genome

Atlas Network, 2015). Thus, we have a unique genetically and ge-

nomically annotated biobank of PDXs, PDX CLs, and cell lines,

representative of the full spectrum of melanoma, which can be

used both for functional studies and pre-clinical drug develop-

ment studies in melanoma.

Our large sample set also enabled us to describe rare sub-

types in greater detail. We found twomutually exclusive patterns

of mutations in the MAPK-signaling pathway: (1) single-hotspot

mutations at BRAF V600 or NRASQ61; and (2) multiple non-hot-

spot variants across different genes encoding proteins within the

MAPK-signaling pathway, of which NF1 mutations are a subset.

All deleterious/likely deleterious non-600 mutations in BRAF,

87% of the NF1, 75% of the non-Q61 RAS, and 44% of KIT

mutant samples harbored either a secondary mutation or high-

level amplification in at least one gene encoding a MAPK-

signaling protein or an effector protein of the MAPK pathway.

These data are consistent with functional studies that have

demonstrated that kinase-dead BRAF (D594 mutants) needs

oncogenic RAS to drive tumor progression (Heidorn et al.,

2010). Our results also suggest that BRAF mutations (e.g., at

G464 and G469) leading to constitutive dimerization (Yao et al.,

2015) also need at least one additional MAPK-signaling mutation

to drive tumor progression, either a single NRAS G12/13 or mul-

tiple other mutations. These data suggest that, to accurately

characterize therapeutic response pre-clinically for non-V600

BRAF or non-Q61 NRAS mutations, a second MAPK-signaling

mutation will be needed to be included in the model. Further,

we can make predictions about the functionality of uncharacter-

ized BRAF non-V600 mutations, in that if the alteration is found

without a secondary MAPK-signaling pathway gene mutation

or in the presence of a BRAF V600 gene mutation, it is very un-

likely to have any functional significance. Similar to BRAF non-

V600 mutations, RAS G12/13 mutations usually are observed

with co-occurring mutations, most commonly in BRAF and

NF1, suggesting they are not sufficient to drive tumorigenesis

in melanoma, in contrast to other tumor types (Hobbs et al.,

2016).

We identified additional MAPK pathway or co-activating gene

mutations in 87%ofNF1mutant tumors. We did not observe any

difference between those with one or two truncating NF1 muta-

tions or with accompanying loss of thewild-type allele. Prior liter-

ature has suggested an enrichment for co-occurring mutations

in Rasopathy genes, particularly PTPN11 and RASA2 (Arafeh

et al., 2015; Cirenajwis et al., 2017; Krauthammer et al., 2015).

However, we observed co-occurrence of deleterious mutations

across numerous genes without specific enrichment, including

those that have not been previously implicated as co-mutated

with NF1, although known to be mutated in melanoma,

MAP3K5 and MAP3K9. Functional studies of BRAFwt/RASwt

melanoma cell lines lacking NF1 expression, or expressing

NF1 at extremely low levels, have shown that not all have RAS

activation and that only some were sensitive to MEKi (Krautham-

mer et al., 2015). This result may be explained by the co-occur-

rence of other MAPK-signaling gene mutations. Pre-clinical

modeling of response to therapies for NF1-mutated melanoma

also will need to account for co-occurring mutations. The NF1

mutant cohort harboring co-mutations in MAPK3K5/9 is of

particular interest, as they are upstream activators of the Jun

N-terminal kinase (JNK) and p38 MAPK pathways (Rana et al.,

2013). The current study provides the reagents to further func-

tionally characterize this interesting rare subtype of melanoma.

Although previous sequencing studies have identified

ARID1A/B, ARID2, IDH1, SMARCA4A, TRRAP, and EZH2 as

chromatin-remodeling genes frequently mutated in melanoma

(Berger et al., 2012; Hodis et al., 2012; Zhang et al., 2016), their

mutual exclusivity has not been well described. Given this

finding, it is likely that the previously described ARID1B depen-

dence in ARID1A-mutated ovarian cancer cells (Helming et al.,

2014) is recapitulated in melanoma, as well as the EZH2 depen-

dency in tumors with mutations in ARID1A or SMARCA4 that do

not harbor co-mutations in RAS or BRAF (Kim et al., 2015). How-

ever, a few ARID1A- and SMARCA4-mutated samples in our
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dataset do have co-mutations in BRAF or RAS, which has been

postulated to abolish EZH2 dependency (Kim et al., 2015),

so further investigation is needed. The biological relevance of

the likely deleterious missense mutations we identified in

ARID1A/B and ARID2, which occur alone and concurrently

with otherARID1A/B and EZH2mutations, also needs to be eval-

uated functionally. Pre-clinical studies using these PDX models

may reveal other specific vulnerabilities in melanomas, with

a mutation in SWI/SNF components ARID1A, ARID1B, ARID2,

or SMARCA4A, that will aid in the development of novel

therapeutics.

We profiled 37 PDXs, PDX CLs, and tumor biopsies from pa-

tients that progressed on targeted therapy (either BRAFi or

BRAFi/MEKi). Our evaluation for resistance mechanisms was

limited by a lack of matched pre-treatment or normal samples

and RNA to evaluate for splice variants or potential fusions. How-

ever, we identified mutations in NRAS, MAP2K1, and BRAF

amplification at rates similar to other series (Johnson et al.,

2015). Amplification of BRAF was enriched in this set (40%), as

compared to the naive group (15%, p = 2 3 10�4). For the two

PDXs with high-level BRAF amplifications, it likely is the primary

mechanism of resistance. For other samples with BRAF amplifi-

cation, it is a potential mechanism of resistance, but it cannot not

be definitively proven as we lackedmatched pre-treatment sam-

ples. For 51% of samples, we did not identify a clear mechanism

of resistance; in half of those, we found amplifications and

drivers outside the MAPK-signaling pathway that may be asso-

ciated with resistance. We also profiled PDXs, PDX CLs, and

tumor biopsies from 71 patients that had received checkpoint

blockade therapy. The genetic and genomic landscape of these

samples was similar to naive samples, albeit with increased

mutational burden and enrichment for non-BRAF mutations.

These post-treatment PDXs are ideal for further studies to iden-

tify potential resistance mechanisms and pre-clinical studies of

potential therapeutics for tumors resistant to either targeted or

checkpoint therapy.

Our study has several limitations, when compared to prior tu-

mor-based analyses. Although the samples are derived from hu-

man tumors, they are established in culture or as PDX models in

T cell-deficient (nude) mice, so they are not subject to an intact

immune system, which may lead to differential selective pres-

sures for mutations or copy number aberrations. Additionally,

intra-tumor heterogeneity observed in PDX expansion (Tentler

et al., 2012) can result in potentially inharmonious PDX/PDX CL

and tumor mutational profiles. We observed a high consistency

between clinical testing and our profiling, likely because the

former mainly included major driver genes. However, when we

sequenced multiple samples from the same individual, we found

several instances of bothwithin-patient andwithin-tumor hetero-

geneity. Further, several of the tumor biopsies (but neither PDXs

nor cell lines) that we sequenced that fall into the WT/WT/WT

group may be normal tissue, as histopathology was not done

on these research samples. Platform and analytical differences

alsomay lead to differences amongmutational and copy number

rates among studies. As we did not have a matched normal

sequence for subtraction, we used population-based data,

non-matched normal and stringent calling metrics to identify

deleterious and likely deleteriousmutations, but these are imper-

fect controls. We also chose to only report out high-level ampli-

fications and homozygous deletions, to be conservative. Thus,

for some genes, our data appear different than prior studies.

For example, mutations in GRIN2A and TRRAP are reported in

22% and 12%, respectively, of melanomas in a meta-analysis

of somatic mutations across studies (Zhang et al., 2016); but,

since we classifiedmost variants in these genes as VUSs, our re-

ported rates of deleterious/likely deleterious mutations are much

lower at 6% and 5.6%. Additionally, we are limited by the genes

and regions included in our panel at the time of design, and sowe

have not interrogated recently identified recurrently mutated

promoter regions, genes associated with resistance to check-

point blockage, and the Rasopathy genes in all samples. Per-

forming unbiased whole-exome or whole-genome sequencing

on 462 samples was not possible due to cost restrictions.

This unparalleled biobank of melanoma cell lines, PDXs, and

PDX CLs in this study provides a set of reagents for not only

future melanoma drug discovery and development efforts but

also extensive biological studies. We have characterized 146

cell lines (31 derived from PDXs), 248 PDXs, and 68 tumor bi-

opsies, which include both those naive to treatment and resistant

to targeted therapy and checkpoint blockade. We have been

able to identify all major and minor subtypes of melanoma,

thus providing reagents that, in some cases, were previously un-

available for functional and biological studies. Although further

evaluation will need to be done in some instances to characterize

the reagents (e.g., targeted therapy progression samples for

which no mechanism of resistance was identified), the current

genetic and genomic copy number data provide a strong basis

for future studies. These reagents enable thoughtful pre-clinical

trials to be designed to determine the in vivo efficacy of novel

single-agent and combination therapies in genetically defined

melanoma subsets, as demonstrated in the companion paper

(Krepler et al., 2017).

EXPERIMENTAL PROCEDURES

Sample Acquisition

Acquisition of patient samples for the purposes of establishing PDXs and cell

lines was approved by the corresponding institutions’ institutional review

boards, and informed consent was obtained from each participant for use of

his or her sample in genetic studies. Tumors were provided from the following

institutions: Perelman School of Medicine at the University of Pennsylvania,

MD Anderson Cancer Center, Helen F. Graham Cancer Center, Massachu-

setts General Hospital, the John Wayne Cancer Institute, the Center for Mela-

noma and Cancer Immunotherapy at Hadassah Hebrew University Medical

Center’s Sharett Institute of Oncology, and the University of Duisburg-Essen.

A full description of PDX development is given in our companion paper (Kre-

pler et al., 2016). As part of this study, 114 human melanoma cell lines, 246

PDXs, 60 PDX CLs, and 68 patient tumors were sequenced (total number of

samples: 462) (Table S1). In addition to melanoma cell lines, PDXs, and PDX

CLs, 36 unmatched anonymous germline blood samples were sequenced

simultaneously, which were used for the normalization for copy number

calling.

Processing of Sequencing Data

Short-read sequences were aligned to the GRCh37 human reference

genome using the Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2009).

Duplicate reads were flagged, as well as reads that mapped equally to

more than one location. Human reads were further disambiguated from

mouse by aligning to the mm10 reference genome using the Python script
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(https://github.com/AstraZeneca-NGS/disambiguate), which takes the hu-

man_aligned.bam and the mouse_aligned.bam as input. Reads that

aligned more confidently to the mouse genome, as well as ambiguous

reads between the two species, were discarded. To achieve acceptable

data quality assurance, the Broad Institute’s Genome Analysis Toolkit

(GATK) ‘‘Best Practices’’ guidelines were followed. Single-nucleotide variant

(SNV) and small insertion and deletion (indel) variant calling was per-

formed by GATK UnifiedGenotyper (DePristo et al., 2011; McKenna et al.,

2010), VarDict (Lai et al., 2016), and Freebayes (Garrison and Marth, 2012).

Variants with a read depth less than 20 and alternative allele read depth less

than five, as well as all synonymous variants, and/or variants present in the

germline samples, were excluded. However, variants that were called by

more than one variant caller and had a sequencing depth of less than 20

were not excluded. Variants were annotated with a customized version of

ANNOVAR (Wang et al., 2010). Variants were removed if the minor allele fre-

quency was greater than or equal to 0.1% in the population databases 1000

Genomes (Abecasis et al., 2012) and/or Exome Aggregation Consortium

(ExAC) (Lek et al., 2016) or found in normal germline samples sequenced on

our capture. The remaining annotated variants were classified as outlined in

Figure S1. Variant classification was confirmed with cBioPortal for Cancer Ge-

nomics, wherever possible (Cerami et al., 2012), and using ClinVar for the Ras-

opathy genes (https://www.ncbi.nlm.nih.gov/clinvar/). Integrative Genomics

Viewer was used for visual confirmation of the majority of calls (Thorvaldsdóttir

et al., 2013).

CNV Prediction

CNV from sequencing data were profiled using copy number detection by

exome sequencing (CODEX) (Jiang et al., 2015). CODEX normalizes depth

of coverage using a Poisson latent factor model that removes biases due

to GC content, exon capture and amplification efficiency, and latent

systemic artifacts. Six Poisson latent factors were included in the normali-

zation model for this dataset, which corresponds to sample- and target-

wise biases and artifacts that cannot be directly measured or quantified.

Segmentation was restricted to exons for all genes. Only homozygous

loss (copy number < 0.7) and high-amplification (copy number > 3.3)

calls are reported. Visual confirmation of CNV calls was done in Nexus

7.5 (BioDiscovery) software.

Biostatistical Analysis

RStudio version 1.0.136 was used to analyze the data. One-way ANOVA was

used to compare the means of variant calls in cell line, PDX, and PDX CL.

Paired t test (along with 95% confidence interval for the difference in means)

was used to compare allelic fractions of all variants, the number of all filtered

variants among all sample types, the mutational burden between patients

that received immunotherapy and naive ones, andmutational burden compar-

ison of naiveNF1mutants, with other naive subtypes. Chi-square test, Fisher’s

exact test, or an unpaired t test was used to make other statistical compari-

sons, as appropriate. For cluster analysis based on correlations, a gene with

CNV < 1 or > 1 was selected for data analysis if it was shown from more

than 10% of study samples. Spearman correlation coefficients were calcu-

lated between each pair of selected genes, and hierarchical clustering by

Euclidian distance and complete linkage using the heatmap.2 function avail-

able from the R Foundation for Statistical Computing (http://www.R-project.

org) was further performed to group the genes based on their correlations.

For all analyses, p < 0.05 was considered statistically significant.

DATA AND SOFTWARE AVAILABILITY

The accession number for the targeted sequencing data reported in this paper
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