26 research outputs found

    A broader role for AmyR in Aspergillus niger: regulation of the utilisation of d-glucose or d-galactose containing oligo- and polysaccharides

    Get PDF
    AmyR is commonly considered a regulator of starch degradation whose activity is induced by the presence of maltose, the disaccharide building block of starch. In this study, we demonstrate that the role of AmyR extends beyond starch degradation. Enzyme activity assays, genes expression analysis and growth profiling on d-glucose- and d-galactose-containing oligo- and polysaccharides showed that AmyR regulates the expression of some of the Aspergillus niger genes encoding alpha- and beta-glucosidases, alpha- and beta- galactosidases, as well as genes encoding alpha-amlyases and glucoamylases. In addition, we provide evidence that d-glucose or a metabolic product thereof may be the inducer of the AmyR system in A. niger and not maltose, as is commonly assumed

    Regulacija puta razgradnje pentoza s pomoću gena izoliranih iz plijesni Aspergillus niger

    Get PDF
    The aim of this study was to obtain a better understanding of the pentose catabolism in Aspergillus niger and the regulatory systems that affect it. To this end, we have cloned and characterised the genes encoding A. niger L-arabitol dehydrogenase (ladA) and xylitol dehydrogenase (xdhA), and compared the regulation of these genes to other genes of the pentose catabolic pathway. This demonstrated that activation of the pathway depends on two transcriptional regulators, the xylanolytic activator (XlnR) and an unidentified L-arabinose specific regulator (AraR). These two regulators affect those genes of the pentose catabolic pathway that are related to catabolic conversion of their corresponding inducers (D-xylose and L-arabinose, respectively).Istraživanje je provedeno radi boljeg razumijevanja puta razgradnje pentoza plijesni Aspergillus niger i regulacijskih sustava koji na njega utječu. Klonirani su i karakterizirani geni koji kodiraju L-arabitol dehidrogenazu (ladA) i ksilitol dehidrogenazu (xdhA) plijesni A. niger, te uspoređeni s ostalim genima koji reguliraju put razgradnje pentoza. Otkriveno je da aktivacija puta razgradnje ovisi o dva regulatora transkripcije gena, tj. aktivatoru razgradnje D-ksiloze (XlnR) i regulatoru ekspresije gena pri razgradnji L-arabinoze (AraR)

    Regulacija puta razgradnje pentoza s pomoću gena izoliranih iz plijesni Aspergillus niger

    Get PDF
    The aim of this study was to obtain a better understanding of the pentose catabolism in Aspergillus niger and the regulatory systems that affect it. To this end, we have cloned and characterised the genes encoding A. niger L-arabitol dehydrogenase (ladA) and xylitol dehydrogenase (xdhA), and compared the regulation of these genes to other genes of the pentose catabolic pathway. This demonstrated that activation of the pathway depends on two transcriptional regulators, the xylanolytic activator (XlnR) and an unidentified L-arabinose specific regulator (AraR). These two regulators affect those genes of the pentose catabolic pathway that are related to catabolic conversion of their corresponding inducers (D-xylose and L-arabinose, respectively).Istraživanje je provedeno radi boljeg razumijevanja puta razgradnje pentoza plijesni Aspergillus niger i regulacijskih sustava koji na njega utječu. Klonirani su i karakterizirani geni koji kodiraju L-arabitol dehidrogenazu (ladA) i ksilitol dehidrogenazu (xdhA) plijesni A. niger, te uspoređeni s ostalim genima koji reguliraju put razgradnje pentoza. Otkriveno je da aktivacija puta razgradnje ovisi o dva regulatora transkripcije gena, tj. aktivatoru razgradnje D-ksiloze (XlnR) i regulatoru ekspresije gena pri razgradnji L-arabinoze (AraR)

    A broader role for AmyR in Aspergillus niger: regulation of the utilisation of d-glucose or d-galactose containing oligo- and polysaccharides

    Get PDF
    AmyR is commonly considered a regulator of starch degradation whose activity is induced by the presence of maltose, the disaccharide building block of starch. In this study, we demonstrate that the role of AmyR extends beyond starch degradation. Enzyme activity assays, genes expression analysis and growth profiling on d-glucose- and d-galactose-containing oligo- and polysaccharides showed that AmyR regulates the expression of some of the Aspergillus niger genes encoding α- and β-glucosidases, α- and β- galactosidases, as well as genes encoding α-amlyases and glucoamylases. In addition, we provide evidence that d-glucose or a metabolic product thereof may be the inducer of the AmyR system in A. niger and not maltose, as is commonly assumed

    Closely related fungi employ diverse enzymatic strategies to degrade plant biomass

    Get PDF
    Background Plant biomass is the major substrate for the production of biofuels and biochemicals, as well as food, textiles and other products. It is also the major carbon source for many fungi and enzymes of these fungi are essential for the depolymerization of plant polysaccharides in industrial processes. This is a highly complex process that involves a large number of extracellular enzymes as well as non-hydrolytic proteins, whose production in fungi is controlled by a set of transcriptional regulators. Aspergillus species form one of the best studied fungal genera in this field, and several species are used for the production of commercial enzyme cocktails. Results It is often assumed that related fungi use similar enzymatic approaches to degrade plant polysaccharides. In this study we have compared the genomic content and the enzymes produced by eight Aspergilli for the degradation of plant biomass. All tested Aspergilli have a similar genomic potential to degrade plant biomass, with the exception of A. clavatus that has a strongly reduced pectinolytic ability. Despite this similar genomic potential their approaches to degrade plant biomass differ markedly in the overall activities as well as the specific enzymes they employ. While many of the genes have orthologs in (nearly) all tested species, only very few of the corresponding enzymes are produced by all species during growth on wheat bran or sugar beet pulp. In addition, significant differences were observed between the enzyme sets produced on these feedstocks, largely correlating with their polysaccharide composition. Conclusions These data demonstrate that Aspergillus species and possibly also other related fungi employ significantly different approaches to degrade plant biomass. This makes sense from an ecological perspective where mixed populations of fungi together degrade plant biomass. The results of this study indicate that combining the approaches from different species could result in improved enzyme mixtures for industrial applications, in particular saccharification of plant biomass for biofuel production. Such an approach may result in a much better improvement of saccharification efficiency than adding specific enzymes to the mixture of a single fungus, which is currently the most common approach used in biotechnology.Peer reviewe

    Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

    Get PDF
    BackgroundSoftwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome.ResultsP. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood.ConclusionsThe P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species

    The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds.

    No full text
    The faeB gene encoding a second feruloyl esterase from Aspergillus niger has been cloned and characterized. It consists of an open reading frame of 1644 bp containing one intron. The gene encodes a protein of 521 amino acids that has sequence similarity to that of an Aspergillus oryzae tannase. However, the encoded enzyme, feruloyl esterase B (FAEB), does not have tannase activity. Comparison of the physical characteristics and substrate specificity of FAEB with those of a cinnamoyl esterase from A. niger [Kroon, Faulds and Williamson (1996) Biotechnol. Appl. Biochem. 23, 255-262] suggests that they are in fact the same enzyme. The expression of faeB is specifically induced in the presence of certain aromatic compounds, but not in the presence of other constituents present in plant-cell-wall polysaccharides such as arabinoxylan or pectin. The expression profile of faeB in the presence of aromatic compounds was compared with the expression of A. niger faeA, encoding feruloyl esterase A (FAEA), and A. niger bphA, the gene encoding a benzoate-p-hydroxylase. All three genes have different subsets of aromatic compounds that induce their expression, indicating the presence of different transcription activating systems in A. niger that respond to aromatic compounds. Comparison of the activity of FAEA and FAEB on sugar-beet pectin and wheat arabinoxylan demonstrated that they are both involved in the degradation of both polysaccharides, but have opposite preferences for these substrates. FAEA is more active than FAEB towards wheat arabinoxylan, whereas FAEB is more active than FAEA towards sugar-beet pectin

    Aspergillus niger mstA encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH.

    No full text
    A sugar-transporter-encoding gene, mstA, which is a member of the major facilitator superfamily, has been cloned from a genomic DNA library of the filamentous fungus Aspergillus niger. To enable the functional characterization of MSTA, a full-length cDNA was expressed in a Saccharomyces cerevisiae strain deficient in hexose uptake. Uptake experiments using 14C-labelled monosaccharides demonstrated that although able to transport D-fructose ( K(m), 4.5+/-1.0 mM), D-xylose ( K(m), 0.3+/-0.1 mM) and D-mannose ( K(m), 60+/-20 microM), MSTA has a preference for D-glucose (K(m), 25+/-10 microM). pH changes associated with sugar transport indicate that MSTA catalyses monosaccharide/H+ symport. Expression of mstA in response to carbon starvation and upon transfer to poor carbon sources is consistent with a role for MSTA as a high-affinity transporter for D-glucose, D-mannose and D-xylose. Northern analysis has shown that mstA is subject to CreA-mediated carbon catabolite repression and pH regulation mediated by PacC. A. niger strains in which the mstA gene had been disrupted are phenotypically identical with isogenic reference strains when grown on 0.1-60 mM D-glucose, D-mannose, D-fructose or D-xylose. This indicates that A. niger possesses other transporters capable of compensating for the absence of MSTA
    corecore