3,812 research outputs found

    A water-soluble supramolecular polymeric dual sensor for temperature and pH with an associated direct visible readout

    Get PDF
    We report a multi-stimuli responsive polymeric sensor consisting of a pseudorotaxane-like architecture fabricated from a 1,5-diaminonaphthalene end-functionalized poly(N-isopropyl)acrylamide (Napht-N-PNIPAM) and cyclobis(paraquat-p-phenylene) (CBPQT4+,4Cl-). The coloured nature of the poly-pseudorotaxane provides a sensor for temperature and pH in water with an associated visible readout. To create this dual responsive polymeric sensor, a new chain transfer agent (Napht-N-CTA) incorporating a pH-responsive 1,5-diaminonaphthalene unit was synthesized and used for the polymerization of N-isopropylacrylamide via Reversible Addition-Fragmentation Chain Transfer (RAFT). The ability of Napht-N-PNIPAM to form a pseudorotaxane architecture with CBPQT4+,4Cl- in aqueous media was studied by means of UV-Vis, NMR (1H, 2D-ROESY, DOSY) and ITC experiments. Interestingly, the pseudorotaxane architecture can be reversibly dissociated upon either heating the sample above its cloud point or protonating the nitrogen atoms of the 1,5-diaminonaphthalene-based guest unit by adjusting the pH to around 1. ln both cases a dramatic colour change occurs from intense blue-green to colourless

    Thermal conductivity of strained silicon: molecular dynamics insight and kinetic theory approach

    Full text link
    In this work, we investigated tensile and compression forces effect on the thermal conductivity of silicon. We used equilibrium molecular dynamics approach for the evaluation of thermal conductivity considering different interatomic potentials. More specifically, we tested Stillinger-Weber, Tersoff, Environment-Dependent Interatomic Potential and Modified Embedded Atom Method potentials for the description of silicon atom motion under different strain and temperature conditions. Additionally, we extracted phonon density of states and dispersion curves from molecular dynamics simulations. These data were used for direct calculations of thermal conductivity considering the kinetic theory approach. Comparison of molecular dynamics and kinetic theory simulations results as a function of strain and temperature allowed us to investigate the different factors affecting the thermal conductivity of strained silicon

    Shells of crystal field symmetries evidenced in oxide nano-crystals

    Full text link
    By the use of a point charge model based on the Judd-Ofelt transition theory, the luminescence from Eu3+ ions embedded in Gd2O3 clusters is calculated and compared to the experimental data. The main result of the numerical study is that without invoking any other mechanisms such as crystal disorder, the pure geometrical argument of the symmetry breaking induced by the particle surface has influence on the energy level splitting. The modifications are also predicted to be observable in realistic conditions where unavoidable size dispersion has to be taken into account. The emission spectrum results from the contribution of three distinct regions, a cluster core, a cluster shell and a very surface, the latter being almost completely quenched in realistic conditions. Eventually, by detailing the spectra of the ions embedded at different positions in the cluster we get an estimate of about 0.5 nm for the extent of the crystal field induced Stark effect. Due to the similarity between Y2O3 and Gd2O3, these results apply also to Eu3+ doped Y2O3 nanoparticles

    Lunar Polar Coring Lander

    Get PDF
    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed

    Elliptical instability in hot Jupiter systems

    Full text link
    Several studies have already considered the influence of tides on the evolution of systems composed of a star and a close-in companion to tentatively explain different observations such as the spin-up of some stars with hot Jupiters, the radius anomaly of short orbital period planets and the synchronization or quasi-synchronization of the stellar spin in some extreme cases. However, the nature of the mechanism responsible for the tidal dissipation in such systems remains uncertain. In this paper, we claim that the so-called elliptical instability may play a major role in these systems, explaining some systematic features present in the observations. This hydrodynamic instability, arising in rotating flows with elliptical streamlines, is suspected to be present in both planet and star of such systems, which are elliptically deformed by tides. The presence and the influence of the elliptical instability in gaseous bodies, such as stars or hot Jupiters, are most of the time neglected. In this paper, using numerical simulations and theoretical arguments, we consider several features associated to the elliptical instability in hot-Jupiter systems. In particular, the use of ad hoc boundary conditions makes it possible to estimate the amplitude of the elliptical instability in gaseous bodies. We also consider the influence of compressibility on the elliptical instability, and compare the results to the incompressible case. We demonstrate the ability for the elliptical instability to grow in the presence of differential rotation, with a possible synchronized latitude, provided that the tidal deformation and/or the rotation rate of the fluid are large enough. Moreover, the amplitude of the instability for a centrally-condensed mass of fluid is of the same order of magnitude as for an incompressible fluid for a given distance to the threshold of the instability. Finally, we show that the assumption of the elliptical instability being the main tidal dissipation process in eccentric inflated hot Jupiters and misaligned stars is consistent with current data.Comment: Icarus (2013) http://dx.doi.org/10.1016/j.icarus.2012.12.01

    Viral envelope glycoproteins swing into action

    Get PDF
    AbstractAnalysis of tick-borne encephalitis virus E protein reveals considerable structural diversity in the glycoproteins that clothe enveloped viruses and hints at the conformational gyrations in this molecule that lead to viral fusion

    ICE: Enabling Non-Experts to Build Models Interactively for Large-Scale Lopsided Problems

    Full text link
    Quick interaction between a human teacher and a learning machine presents numerous benefits and challenges when working with web-scale data. The human teacher guides the machine towards accomplishing the task of interest. The learning machine leverages big data to find examples that maximize the training value of its interaction with the teacher. When the teacher is restricted to labeling examples selected by the machine, this problem is an instance of active learning. When the teacher can provide additional information to the machine (e.g., suggestions on what examples or predictive features should be used) as the learning task progresses, then the problem becomes one of interactive learning. To accommodate the two-way communication channel needed for efficient interactive learning, the teacher and the machine need an environment that supports an interaction language. The machine can access, process, and summarize more examples than the teacher can see in a lifetime. Based on the machine's output, the teacher can revise the definition of the task or make it more precise. Both the teacher and the machine continuously learn and benefit from the interaction. We have built a platform to (1) produce valuable and deployable models and (2) support research on both the machine learning and user interface challenges of the interactive learning problem. The platform relies on a dedicated, low-latency, distributed, in-memory architecture that allows us to construct web-scale learning machines with quick interaction speed. The purpose of this paper is to describe this architecture and demonstrate how it supports our research efforts. Preliminary results are presented as illustrations of the architecture but are not the primary focus of the paper

    Numerical simulation of colloid dead-end filtration: effect of membrane characteristics and operating conditions on matter accumulation

    Get PDF
    The aim of this work is to develop a simulation capability applicable to dead-end filtration of colloidal dispersions in order to investigate the effect of process conditions, such as membrane configuration and operating parameters, on filtration efficiency through the analysis of the appearance of a deposit on the membrane. To reach this goal, a model describing the transport behaviour of a concentrated colloidal dispersion is implemented in a commercial CFD code (ANSYS-CFX). The collective diffusion induced by inter-particle interactions is accounted for from knowledge of the variation of the osmotic pressure with the particle volume fraction. Coupled with a transient, two dimensional hydrodynamic solution, such a model allows description of the mass transport properties both in the dispersed (concentration polarization) and the condensed (deposit) forms of accumulation. Two-dimensional concentration profiles along the membrane are obtained. Simulations are used to understand the role of operating parameters and membrane characteristics on the appearance of a deposit at the membrane surface. This formation is controlled by the hollow fibre configuration, where there are zones working in both cross-flow and dead-end mode due to the particular hydrodynamic conditions
    corecore