309 research outputs found

    B792: The Development of the Ability to Select for Increased Milk Production: The Jersey Dairy Cow in Maine, 1900-1984

    Get PDF
    Histories of dairying and dairy farming usually pass over one very important topic, the point of origin herself: the dairy cow. In the past 150 years, the period associated with the rise of commercial dairying in the U.S., she has not been a static creature. The story of her development is an important and exciting part of the history of dairying, but this development cannot be explained by such phrases as feeding and management improved or breeding improved . Since the dairy cow of the 1980s is not the same dairy cow of the 1830s, we should understand how this transition occurred and why it is important.https://digitalcommons.library.umaine.edu/aes_bulletin/1128/thumbnail.jp

    A comparison of rehabilitated coal mine soil and unmined soil supporting grazed pastures in south-east Queensland

    Get PDF
    Land that is disturbed by mining activities is required to undergo suitable rehabilitation. This study compared soils supporting grazed pasture on land that was rehabilitated after coal mining activity with that on unmined land. Pasture biomass, and soil physical and chemical properties important for pasture production and sustainability were intensively monitored on three sites that had completed rehabilitation at different times over the last 10 years, and one unmined control site. A further 18 unmined grazing sites were monitored for benchmarking purposes. Analysis of soil properties of plant available phosphorus and nitrogen, salinity and sodicity in the first year of the study suggested little difference in terms of benefits or constraints to pasture production between the rehabilitated and control sites. Plant-available phosphorus was sufficiently high in the two oldest rehabilitated sites that a fertiliser response would not be expected. Soil depth and the pasture rooting depth at the rehabilitated sites were at the shallow end of the wide range observed across the benchmark and control sites. Higher pasture biomass at the rehabilitated sites compared with the control at the initiation of the trial was attributed more to differences in grazing history than differences in soil attributes

    Deficiency of GABAergic synaptic inhibition in the Kölliker-Fuse area underlies respiratory dysrhythmia in a mouse model of Rett syndrome

    Get PDF
    Life threatening breathing irregularity and central apnoeas are highly prevalent in children suffering from Rett syndrome. Abnormalities in inhibitory synaptic transmission have been associated with the physiopathology of this syndrome, and may underlie the respiratory disorder. In a mouse model of Rett syndrome, GABAergic terminal projections are markedly reduced in the Kölliker–Fuse nucleus (KF) in the dorsolateral pons, an important centre for control of respiratory rhythm regularity. Administration of a drug that augments endogenous GABA localized to this region of the pons reduced the incidence of apnoea and the respiratory irregularity of Rett female mice. Conversely, the respiratory disorder was recapitulated by blocking GABAergic transmission in the KF area of healthy rats. This study helps us understand the mechanism for generation of respiratory abnormality in Rett syndrome, pinpoints a brain site responsible and provides a clear anatomical target for the development of a translatable drug treatment

    Ballistic impact behaviour of glass fibre reinforced polymer composite with 1D/2D nanomodified epoxy matrices

    Get PDF
    In this paper, experimental studies on the ballistic impact behaviour of nanomodified glass fibre-reinforced polymer (GFRP) are reported. The epoxy matrix of the GFRP was modified by the addition of graphene platelets (GNPs), carbon nanotubes (CNTs), combined hybrid hexagonal boron nitride nanosheets (BNNS)/CNT, and combined boron nitride nanotubes (BNNTs)/GNPs nanoparticles. Ballistic impact tests were carried out on GFRP laminates at two projectile velocities of 76 ± 1 m s−1 for full-field deformation measurements and 134.3 ± 1.7 m s−1 for perforation tests. The behaviour of the plates during impact was recorded using digital image correlation (DIC), in order to monitor strain and out-of-plane deformation in panels with nanoreinforced matrices. Following penetrative impact tests, pulse thermography was used to characterise the delamination of impacted plates. The results of full-field deformation, exit velocity and energy absorption measurements from the ballistic tests show significant improvements in impact resistance for the panels made from nanomodified epoxies relative to laminates with the unmodified epoxy matrix. The highest absolute absorbed energy was observed for the GFRP panels fabricated using the epoxy matrix loaded with BNNT/GNP at 255.7 J, 16.8% higher than the unmodified epoxy matrix

    On the extent of fracture toughness transfer from 1D/2D nanomodified epoxy matrices to glass fibre composites

    Get PDF
    Abstract: In this study, the effects of adding nanofillers to an epoxy resin (EP) used as a matrix in glass fibre-reinforced plastic (GFRP) composites have been investigated. Both 1D and 2D nanofillers were used, specifically (1) carbon nanotubes (CNTs), (2) few-layer graphene nanoplatelets (GNPs), as well as hybrid combinations of (3) CNTs and boron nitride nanosheets, and (4) GNPs and boron nitride nanotubes (BNNTs). Tensile tests have shown improvements in the transverse stiffness normal to the fibre direction of up to about 25% for the GFRPs using the ‘EP + CNT’ and the ‘EP + BNNT + GNP’ matrices, compared to the composites with the unmodified epoxy (‘EP’). Mode I and mode II fracture toughness tests were conducted using double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively. In the quasi-static mode I tests, the values of the initiation interlaminar fracture toughness, GICC, of the GFRP composites showed that the transfer of matrix toughness to the corresponding GFRP composite is greatest for the GFRP composite with the GNPs in the matrix. Here, a coefficient of toughness transfer (CTT), defined as the ratio of mode I initiation interlaminar toughness for the composite to the bulk polymer matrix toughness, of 0.68 was recorded. The highest absolute values of the mode I interlaminar fracture toughness at crack initiation were achieved for the GFRP composites with the epoxy matrix modified with the hybrid combinations of nanofillers. The highest value of the CTT during steady-state crack propagation was ~ 2 for all the different types of GFRPs. Fractographic analysis of the composite surfaces from the DCB and ENF specimens showed that failure was by a combination of cohesive (through the matrix) and interfacial (along the fibre/matrix interface) modes, depending on the type of nanofillers used

    The potential for a rehabilitated coal mine soil to support livestock grazing in south-east Queensland

    Get PDF
    Land that is disturbed by mining activities is required to be suitably rehabilitated. A trial was initiated to compare the performance of livestock grazing pasture sown on land that was rehabilitated after coal mining activity with that of livestock grazing pasture on unmined land. Pasture biomass, and soil structural, nutritional and hydrological properties important for pasture production and sustainability were intensively monitored on three sites rehabilitated at different stages over the last 10 years, and one unmined Control site. A further 18 unmined grazing sites were monitored for benchmarking purposes. Preliminary results for soil ammonium, nitrate and potentially mineralisable nitrogen suggest little difference in terms of benefits or constraints to pasture production between the rehabilitated and Control sites. Plant-available phosphorus was sufficiently high in the two oldest rehabilitated sites that a fertiliser response would not be expected. Subsoil and rooting depth of the rehabilitated sites was within the range observed across the benchmark sites and shallower than in the Control site. Higher pasture biomass in the rehabilitated sites compared with the Control at the initiation of the trial was attributed more-so to differences in grazing history than differences in soil attributes. Analysis of year one monitoring data is ongoing

    Penetrometry of granular and moist planetary surface materials: Application to the Huygens landing site on Titan

    Get PDF
    The Huygens probe landed on the then unknown surface of Titan in January 2005. A small, protruding penetrometer, part of the Surface Science Package (SSP), was pushed into the surface material measuring the mechanical resistance of the ground as the probe impacted the landing site. We present laboratory penetrometry into room temperature surface analogue materials using a replica penetrometer to investigate further the nature of Titan's surface and examine the sensor's capabilities. The results are then compared to the flight instrument's signature and suggest the Titan surface substrate material consists of sand-sized particles with a mean grain size ~2 mm. A possible thin 7 mm coating with mechanical properties similar to terrestrial snow may overlie this substrate, although due to the limited data we are unable to detect any further layering or grading within the near-surface material. The unusual weakening with depth of the signature returned from Titan has, to date, only been reproduced using a damp sand target that becomes progressively wetter with depth, and supports the suggestion that the surface may consist of a damp and cohesive material with interstitial liquid contained between its grains. Comparison with terrestrial analogues highlights the unusual nature of the landing site material

    Sustainability of beef production from brigalow lands after cultivation and mining. 1. Sown pasture growth and carrying capacity

    Get PDF
    Context: New Acland coal mine in south-eastern Queensland is seeking to rehabilitate mined land to pastures that are safe, stable and sustainable for beef production. Little is known of the productivity and sustainability of grazing previously mined land in the Darling Downs study region. Additionally, information is required to specify management guidelines for sustainable grazing of regional land types retired from cultivation. Aims: Identify pasture growth characteristics, rainfall use efficiencies and long-term carrying capacities of subtropical sown pastures established on lands rehabilitated after open-cut coal mining in comparison to sown pastures established on un-mined but previously cultivated lands. Methods: Pasture growth and quality (% nitrogen) were observed using the Swiftsynd methodology in ungrazed exclosures with three sites on rehabilitated lands of the Acland Grazing Trial over a 5-year period (2014–2018), and 13 sites on unmined lands over periods of 2–5 years providing data for modelling pasture growth. Key results: Peak pasture yield (TSDM for autumn harvests) averaged for 2017 and 2018 was greater (P < 0.1) on rehabilitated sites than unmined Poplar Box land type sites (5957 and 2233 kg/ha respectively) but similar to Brigalow Uplands and Mountain Coolibah land type sites (3946 and 3413 kg/ha respectively). Pasture rundown was evident, with pasture N uptake decreasing over 5 years at some sites. Soil mineral N supply (potentially mineralisable N and mineral N) in spring was a useful indicator of N uptake over the following growing season. Simulations using the GRASP pasture growth model for the grazing trial period predicted rainfall use efficiencies of 12.0, 7.0, 9.1 and 4.8 kg/ha.mm rainfall for rehabilitated sites and unmined sites on Brigalow Uplands, Mountain Coolibah and Poplar Box land types respectively. Long-term carrying capacities based on estimates of long-term median pasture growth and 30% utilisation were 4.39, 3.58 and 5.92 ha/adult equivalent respectively for the unmined land types, and 2.45 ha/adult equivalent for the rehabilitated lands. Conclusions: Rehabilitated land can be as productive as unmined but previously cultivated land. Implications: Grazing management plans for sustainable management of mined and unmined lands can be developed using data from the present study. The plans will assist with the transition of rehabilitated lands to commercial agriculture

    Sustainability of beef production from brigalow lands after cultivation and mining. 3. Pasture rundown, climate and grazing pressure effects

    Get PDF
    Context: The Acland Land System overlying the Walloon sandstone coal deposits in southern Queensland is generally marginal for cropping but well suited to grazing, and thus cultivated land is commonly returned to pasture. Rehabilitation of these lands after open-cut coal mining seeks to be safe, stable and self-sustaining to satisfy requirements for ecologically sustainable development. Aims: The present paper evaluates the sustainability and economic viability of beef production on (a) lands retired from cultivation and then rehabilitated with sown pastures after open-cut coal mining at the New Acland mine site, and (b) similar nearby pasture lands that were not mined but were also retired from cultivation. Methods: The GRASP grazing systems model was modified and calibrated with short-term (5-year) grazing trial data (soil, pasture and cattle observations), and then used with long-term (60-year) weather data to estimate effects of land type, pasture rundown, climate and grazing pressure on productivity and economic returns. The productivity of three rehabilitated sites and 15 unmined sites were evaluated, including pastures on six commercial properties. Key results: Estimates of long-term mean annual growth of pastures on unmined lands retired from cultivation on three land types (Mountain Coolibah, Brigalow Uplands and Poplar Box) were 3398, 2817 and 2325 kg/ha respectively. Pasture growth was greater on rehabilitated lands; 3736 kg/ha on the site most typical of rehabilitated lands and a mean of 4959 kg/ha across three sites. Seasonal conditions had large effects on cattle liveweight gain (133–213 kg/head per year during the trial); however, pasture growth was the main driver of beef production and economic returns per hectare. In GRASP, potential nitrogen uptake was used to influence key pasture growth processes and accounted for 64% of variation in observed annual growth. The short-term lift and subsequent rundown in productivity typically associated with sown pastures was estimated to have increased mean annual pasture and cattle productivity during the 2014–2018 trial period by up to 17% and 25% respectively. Estimates of long-term mean annual beef production and economic returns for the unmined lands were less than estimated for rehabilitated lands and were 139 kg/head.year (45 kg/ha.year) and AU$154/adult equivalent. Conclusions: Rehabilitated lands were found to be sustainable for beef production at grazing pressures up to 30% utilisation of annual pasture growth, and comparable with grazing systems on native and sown pastures in good condition. Pastures on unmined lands retired from cultivation had reduced productivity. Implications: Overgrazing is a significant and on-going residual risk to sustainable production. Grazing regimes need to continually adjust for changes in novel landscapes, pasture condition and climate. The methods used in the present study could be applied more generally
    • …
    corecore