496 research outputs found

    The cholesterol-solubilizing power of biliary lipids

    Get PDF
    No Abstrac

    The catechol amines and their receptors

    Get PDF
    Click on the link to view

    Uncertainty and decision making: Volcanic crisis scenarios

    Get PDF
    AbstractThe impact of uncertainty on Disaster Risk Reduction decision-making has become a pressing issue for debate over recent years. How do key officials interpret and accommodate uncertainty in science advice, forecasts and warnings into their decision making? Volcanic eruptions present a particularly uncertain hazard environment, and to accommodate this scientists utilize probabilistic techniques to inform decision-making. However, the interpretation of probabilities is influenced by their framing. We investigate how verbal or numerical probabilities affect decisions to evacuate a hypothetical town, and reasons given for that decision, based upon a volcanic eruption forecast. We find fewer evacuations for verbal terms than for equivalent numerical terms, and that the former is viewed as more ambiguous. This difference is greater for scientists, which we suggest is due to their greater familiarity with numerical probabilities and a belief that they are more certain. We also find that many participants have a poor understanding of the relationship between probability and time window stated, resulting in an incorrect assessment of overall likelihood and more evacuations for the lower likelihood version of two scenarios. Further, we find that career sector (scientist or non-scientist) influences evacuation decisions, with scientists tending to reduce the uncertainty by focusing on the quality and volume of information provided, while non-scientists tended to either acknowledge or suppress the uncertainty, focusing on actions to take. These findings demonstrate the importance of identifying communication strategies that mitigate different perceptions of forecasts, to both enhance end-user decision making and to prevent premature, delayed, or unnecessary actions

    Chandra X-Ray Spectroscopy Of The Very Early O Supergiant HD 93129A: Constraints On Wind Shocks And The Mass-Loss Rate

    Get PDF
    We present an analysis of both the resolved X-ray emission-line profiles and the broad-band X-ray spectrum of the O-2 If* star HD 93129A, measured with the Chandra High Energy Transmission Grating Spectrometer ( HETGS). This star is among the earliest and most massive stars in the Galaxy, and provides a test of the embedded wind-shock scenario in a very dense and powerful wind. A major new result is that continuum absorption by the dense wind is the primary cause of the hardness of the observed X-ray spectrum, while intrinsically hard emission from colliding wind shocks contributes less than 10 per cent of the X-ray flux. We find results consistent with the predictions of numerical simulations of the line-driving instability, including line broadening indicating an onset radius of X-ray emission of several tenths of R-*. Helium-like forbidden-to-intercombination line ratios are consistent with this onset radius, and inconsistent with being formed in a wind-collision interface with the star\u27s closest visual companion at a distance of 100 au. The broad-band X-ray spectrum is fitted with a dominant emission temperature of just kT = 0.6 keV along with significant wind absorption. The broad-band wind absorption and the line profiles provide two independent measurements of the wind mass-loss rate:. M = 5.2(-1.5)(+1.8) x 10(-6) and 6.8(-2.2)(+2.8) x 10(-6) M-circle dot yr(-1), respectively. This is the first consistent modelling of the X-ray line-profile shapes and broad-band X-ray spectral energy distribution in a massive star, and represents a reduction of a factor of 3-4 compared to the standard H alpha mass-loss rate that assumes a smooth wind

    A revised position for the rotated Falkland Islands microplate

    Get PDF
    The early stages of transform margin formation are associated with crustal fragmentation and block rotation. The restricted size of the resultant microcontinental blocks precludes palaeogeographical reconstructions and reliable estimations of the amount of rotation they can undergo. An example considered here is the Falkland Plateau. This is located adjacent to the Agulhas–Falkland Fracture Zone and its westernmost province is the Falkland Islands microcontinent. The position of the plateau and the islands prior to Gondwana break-up remains contentious. This study integrates seismic reflection and gravity data to propose a revised position of the Falkland Islands microcontinent constrained by (1) the presence of a mega-dĂ©collement, controlling the Gondwanide Orogen, described north of the Falkland Islands and underneath South Africa and the Outeniqua Basin, and (2) the similar architecture of fault networks mapped north of the islands and in the northernmost Outeniqua Basin. This revised position requires a re-evaluation of the timing and rate of rotation of the Falkland Islands microcontinent and affects the expected crustal architecture adjacent to the islands. Our model yields rotation rates between 5.5° and 8° Ma−1 and two potential times for rotation, and predicts more unstretched crust beneath the basin east of the Falkland Islands than previous model

    Trace gas emissions from savanna fires in northern Australia

    Get PDF
    We present analyses of near‐infrared ground‐based Fourier transform infrared solar absorption spectra recorded from a site in Darwin, Northern Territory, Australia (12.4°S, 130.9°E) from August 2005 to June 2008. Total column amounts of carbon monoxide derived from these spectra show a very clear annual cycle, with evidence of transported pollution from Indonesian fires in 2006. Aerosol optical depth measurements from the same site show a similar annual cycle but without exceptional values in 2006, suggesting significant loss of aerosol loading in the transported and aged smoke. In addition, we report the first ever measurements by remote sensing solar Fourier transform infrared of emission ratios with respect to carbon monoxide for formaldehyde (0.022 ± 0.007), acetylene (0.0024 ± 0.0003), ethane (0.0020 ± 0.0003), and hydrogen cyanide (0.0018 ± 0.0003) from Australian savanna fires. These are derived from mid‐infrared spectra recorded through smoke plumes over Darwin on 20 separate days. The only previous measurements of emission ratios for formaldehyde and hydrogen cyanide from Australian savanna fires involved cryogenic trapping and storage of samples that were gathered in very fresh smoke. The results reported here are nearly an order of magnitude higher (but in agreement with laboratory studies), suggesting losses in the collection, storage, or transfer of the gases in the earlier measurements and/or chemical production of these reactive gases within the smoke plumes. Emission ratios for acetylene and ethane from this work are in broad agreement with other literature values
    • 

    corecore