504 research outputs found

    Characterization of photon recycling in thin crystalline GaAs light emitting diodes

    Get PDF
    Gallium arsenide light emitting diodes (LEDs) were fabricated using molecular beam epitaxial films on GaAs substrates and removed by epitaxial lift-off (ELO). Lifted off devices were then mounted on a Si wafer using a Pd/Au/Cr contact layer, which also served as a back surface reflector. Devices were characterized by electrical and optical measurements, and the results for devices on the GaAs substrate were compared to those for EL0 devices. EL0 LEDs coated with a ZnS/MgF2 antireflection coating exhibited an optical output that was up to six times that of LEDs on GaAs substrates. At the same time, the measured current-voltage characteristics of the EL0 devices displayed a lower IZ = 1 current component. EL0 LEDs with efficiencies up to 12.5% were realized. We attribute these results to photon recycIing enhanced by the back-surface reflector in the EL0 LEDs. The luminescence versus current and current versus voltage characteristics of the LEDs were analyzed to obtain the nonradiative minority carrier lifetimes and the photon recycling factors. The results demonstrate that the measured characteristics are well described by photon recycling theory. EL0 LEDs may prove useful for characterizing recombination processes in LEDs, and thin-crystalline structures could provide substantial efficiency enhancements for LEDs and solar cells

    Relationship of serum prolactin with severity of drug use and treatment outcome in cocaine dependence.

    Get PDF
    RATIONALE: Alteration in serum prolactin (PRL) levels may reflect changes in central dopamine activity, which modulates the behavioral effects of cocaine. Therefore, serum PRL may have a potential role as a biological marker of drug severity and treatment outcome in cocaine dependence. OBJECTIVE: We investigated whether serum PRL levels differed between cocaine-dependent (CD) subjects and controls, and whether PRL levels were associated with severity of drug use and treatment outcome in CD subjects. METHODS: Basal PRL concentrations were assayed in 141 African-American (AA) CD patients attending an outpatient treatment program and 60 AA controls. Severity of drug use was assessed using the Addiction Severity Index (ASI). Measures of abstinence and retention during 12 weeks of treatment and at 6-month follow-up were employed as outcome variables. RESULTS: The basal PRL (ng/ml) in CD patients (9.28+/-4.13) was significantly higher than controls (7.33+/-2.94) (t=3.77, P\u3c0.01). At baseline, PRL was positively correlated with ASI-drug (r=0.38, P\u3c0.01), ASI-alcohol (r=0.19, P\u3c0.05), and ASI-psychological (r=0.25, P\u3c0.01) composite scores, and with the quantity of cocaine use (r=0.18, P\u3c0.05). However, PRL levels were not significantly associated with number of negative urine screens, days in treatment, number of sessions attended, dropout rate or changes in ASI scores during treatment and at follow-up. Also, basal PRL did not significantly contribute toward the variance in predicting any of the outcome measures. CONCLUSION: Although cocaine use seems to influence PRL levels, it does not appear that PRL is a predictor of treatment outcome in cocaine dependence

    Penetration Dynamics of Earth Penetration Warhead into Composite Target Media

    Get PDF
    Attempts have been made to develop a suitable computer code that can find solutions to the axi-symmetric penetration of an Earth Penetrating Warhead yielding complete space-time histories of the resistive force offered by the target medium. The consequent warhead deceleration and velocity reduction, the resulting axial compressive stress developed in warhead casing as the penetration process progresses into the composite target media consisting of hard concrete of specified thickness followed by earth soil have been discussed

    Transistor-Based Studies of Heavy Dop-ing Effects in n-GaAs

    Get PDF
    The n2ieDp product (where n2ie is the np product and Dp is the minority hole mobility) in heavily doped n‐GaAs has been measured by electrical characterization of p‐n‐p GaAs homojunction transistors with base dopings ranging from approximately 1×1017 to 9×1018 cm−3. The measured n2ieDp product decreases as the doping density increases. These results suggest that nie is roughly constant with doping density, in sharp contrast to the large increase observed for p‐type GaAs. This work shows that when designing GaAs bipolar devices, it is important to consider the large difference in effective band gap between n+ and p+ regions

    Triple Reuptake Inhibitors: The Next Generation of Antidepressants

    Get PDF
    Depression has been associated with impaired neurotransmission of serotonergic, norepinephrinergic, and dopaminergic pathways, although most pharmacologic treatment strategies for depression enhance only serotonin and norepinephrine neurotransmission. Current drug development efforts are aimed at a new class of antidepressants which inhibit the reuptake of all three neurotransmitters in the hope of creating medications with broader efficacy and/or quicker onset of action. The current review explores limitations of presently available antidepressants and the history and premise behind the movement to devise triple reuptake inhibitors. The evidence for and against the claim that broader spectrum agents are more efficacious is discussed. Examples of triple reuptake inhibitors in development are compared, and preclinical and clinical research with these agents to date is described

    Very low resistance nonalloyed ohmic contacts using low-temperature molecular beam epitaxy of GaAs

    Get PDF
    Ex situ nonalloyed ohmic contacts were made to n- and p‐type GaAs using low‐temperature molecular beam epitaxy. For n‐type GaAs, Ag, and Ti/Au nonalloyed contacts displayed specific contact resistitivities of mid 10-7 ohm cm2. For p‐type GaAs, nonalloyed Ti/Au contacts with specific contact resistivities of about 10-7 ohm cm2 were obtained

    Serotonin-Norepinephrine Reuptake Inhibitors for Pain Control: Premise and Promise

    Get PDF
    The precise mechanisms of pain perception and transmission in the central nervous system have not been fully elucidated. However, extensive data support a role for the monoamine neurotransmitters, serotonin and norepinephrine, in the modulation of pain. Experiments with animal models of pain indicate that noradrenergic interventions, and to a lesser extent serotonergic interventions, reduce pain-related behavior. This is supported by data from clinical trials in humans in which antidepressants have been shown to reduce pain and functional impairment in central and neuropathic pain conditions. These effects are particularly well-studied in trials with serotonin-norepinephrine reuptake inhibitors (SNRIs), which have provided a useful tool in the clinician’s arsenal, particularly considering the limitations of other classes of pain medications such as opioids, anti-inflammatories, and anticonvulsants (i.e., limited efficacy, safety and tolerability issues). Moreover, painful physical symptoms are frequently comorbid with major psychiatric disorders such as major depressive disorder and anxiety disorders. This paper reviewed and summarized the rationale and potential role of SNRIs for the control of pain including clinical and preclinical background. Currently evidence does not definitely support a role of the SNRIs, while limited data propose a putative promise of SNRIs in the treatment of pain related disorders including fibromyalgia and depressed patients with multiple somatic complaints. More researches are warranted to generalize currently available preliminary evidences

    Human uterine and placental arteries exhibit tissue-specific acute responses to 17β-estradiol and estrogen-receptor-specific agonists

    Get PDF
    The discrete regulation of vascular tone in the human uterine and placental circulations is a key determinant of appropriate uteroplacental blood perfusion and pregnancy success. Humoral factors such as estrogen, which increases in the placenta and maternal circulation throughout human pregnancy, may regulate these vascular beds as studies of animal arteries have shown that 17β-estradiol, or agonists of estrogen receptors (ER), can exert acute vasodilatory actions. The aim of this study was to compare how acute exposure to ER-specific agonists, and 17β-estradiol, altered human placental and uterine arterial tone in vitro. Uterine and placental arteries were isolated from biopsies obtained from women with uncomplicated pregnancy delivering a singleton infant at term. Vessels were mounted on a wire myograph, exposed to the thromboxane receptor agonist U46619 (10(−6) M), and then incubated with incremental doses (5 min, 0.03–30 µM) of either 17β-estradiol or agonists specific for the ERs ERα (PPT), ERβ (DPN) or the G-protein-coupled estrogen receptor GPER-1 (G1). ERα and ERβ mRNA expression was assessed. 17β-estradiol, PPT and DPN each relaxed myometrial arteries (P < 0.05) in a manner that was partly endothelium-dependent. In contrast, 17β-estradiol or DPN relaxed placental arteries (maximum relaxation to 42 ± 1.1 or 47.6 ± 6.53% of preconstriction, respectively) to a lesser extent than myometrial arteries (to 0.03 ± 0.03 or 8.0 ± 1.0%) and in an endothelial-independent manner whereas PPT was without effect. G1 exposure did not inhibit the constriction of myometrial nor placenta arteries. mRNA expression of ERα and ERβ was greater in myometrial arteries than placental arteries. ER-specific agonists, and 17β-estradiol, differentially modulate the tone of uterine versus placental arteries highlighting that estrogen may regulate human uteroplacental blood flow in a tissue-specific manner

    CSF1R-dependent macrophages control postnatal somatic growth and organ maturation

    Get PDF
    Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation
    • …
    corecore