50 research outputs found

    A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data

    Get PDF
    Class imbalance presents a major hurdle in the application of classification methods. A commonly taken approach is to learn ensembles of classifiers using rebalanced data. Examples include bootstrap averaging (bagging) combined with either undersampling or oversampling of the minority class examples. However, rebalancing methods entail asymmetric changes to the examples of different classes, which in turn can introduce their own biases. Furthermore, these methods often require specifying the performance measure of interest a priori, i.e., before learning. An alternative is to employ the threshold moving technique, which applies a threshold to the continuous output of a model, offering the possibility to adapt to a performance measure a posteriori, i.e., a plug-in method. Surprisingly, little attention has been paid to this combination of a bagging ensemble and threshold-moving. In this paper, we study this combination and demonstrate its competitiveness. Contrary to the other resampling methods, we preserve the natural class distribution of the data resulting in well-calibrated posterior probabilities. Additionally, we extend the proposed method to handle multiclass data. We validated our method on binary and multiclass benchmark data sets by using both, decision trees and neural networks as base classifiers. We perform analyses that provide insights into the proposed method. Keywords: Imbalanced data; Binary classification; Multiclass classification; Bagging ensembles; Resampling; Posterior calibrationBurroughs Wellcome Fund (Grant 103811AI

    Verifiability as a Complement to AI Explainability: A Conceptual Proposal

    Get PDF
    Recent advances in the field of artificial intelligence (AI) are providing automated and in many cases improved decision-making. However, even very reliable AI systems can go terribly wrong without human users understanding the reason for it. Against this background, there are now widespread calls for models of “explainable AI”. In this paper we point out some inherent problems of this concept and argue that explainability alone is probably not the solution. We therefore propose another approach as a complement, which we call “verifiability”. In essence, it is about designing AI so that it makes available multiple verifiable predictions (given a ground truth) in addition to the one desired prediction that cannot be verified because the ground truth is missing. Such verifiable AI could help to further minimize serious mistakes despite a lack of explainability, help increase their trustworthiness and in turn improve societal acceptance of AI

    Julearn: an easy-to-use library for leakage-free evaluation and inspection of ML models

    Full text link
    The fast-paced development of machine learning (ML) methods coupled with its increasing adoption in research poses challenges for researchers without extensive training in ML. In neuroscience, for example, ML can help understand brain-behavior relationships, diagnose diseases, and develop biomarkers using various data sources like magnetic resonance imaging and electroencephalography. The primary objective of ML is to build models that can make accurate predictions on unseen data. Researchers aim to prove the existence of such generalizable models by evaluating performance using techniques such as cross-validation (CV), which uses systematic subsampling to estimate the generalization performance. Choosing a CV scheme and evaluating an ML pipeline can be challenging and, if used improperly, can lead to overestimated results and incorrect interpretations. We created julearn, an open-source Python library, that allow researchers to design and evaluate complex ML pipelines without encountering in common pitfalls. In this manuscript, we present the rationale behind julearn's design, its core features, and showcase three examples of previously-published research projects that can be easily implemented using this novel library. Julearn aims to simplify the entry into the ML world by providing an easy-to-use environment with built in guards against some of the most common ML pitfalls. With its design, unique features and simple interface, it poses as a useful Python-based library for research projects.Comment: 13 pages, 5 figure

    The PhyloPythiaS Web Server for Taxonomic Assignment of Metagenome Sequences

    Get PDF
    Metagenome sequencing is becoming common and there is an increasing need for easily accessible tools for data analysis. An essential step is the taxonomic classification of sequence fragments. We describe a web server for the taxonomic assignment of metagenome sequences with PhyloPythiaS. PhyloPythiaS is a fast and accurate sequence composition-based classifier that utilizes the hierarchical relationships between clades. Taxonomic assignments with the web server can be made with a generic model, or with sample-specific models that users can specify and create. Several interactive visualization modes and multiple download formats allow quick and convenient analysis and downstream processing of taxonomic assignments. Here, we demonstrate usage of our web server by taxonomic assignment of metagenome samples from an acidophilic biofilm community of an acid mine and of a microbial community from cow rumen

    Neurobiological Divergence of the Positive and Negative Schizophrenia Subtypes Identified on a New Factor Structure of Psychopathology Using Non-negative Factorization:An International Machine Learning Study

    Get PDF
    ObjectiveDisentangling psychopathological heterogeneity in schizophrenia is challenging and previous results remain inconclusive. We employed advanced machine-learning to identify a stable and generalizable factorization of the “Positive and Negative Syndrome Scale (PANSS)”, and used it to identify psychopathological subtypes as well as their neurobiological differentiations.MethodsPANSS data from the Pharmacotherapy Monitoring and Outcome Survey cohort (1545 patients, 586 followed up after 1.35±0.70 years) were used for learning the factor-structure by an orthonormal projective non-negative factorization. An international sample, pooled from nine medical centers across Europe, USA, and Asia (490 patients), was used for validation. Patients were clustered into psychopathological subtypes based on the identified factor-structure, and the neurobiological divergence between the subtypes was assessed by classification analysis on functional MRI connectivity patterns.ResultsA four-factor structure representing negative, positive, affective, and cognitive symptoms was identified as the most stable and generalizable representation of psychopathology. It showed higher internal consistency than the original PANSS subscales and previously proposed factor-models. Based on this representation, the positive-negative dichotomy was confirmed as the (only) robust psychopathological subtypes, and these subtypes were longitudinally stable in about 80% of the repeatedly assessed patients. Finally, the individual subtype could be predicted with good accuracy from functional connectivity profiles of the ventro-medial frontal cortex, temporoparietal junction, and precuneus.ConclusionsMachine-learning applied to multi-site data with cross-validation yielded a factorization generalizable across populations and medical systems. Together with subtyping and the demonstrated ability to predict subtype membership from neuroimaging data, this work further disentangles the heterogeneity in schizophrenia

    Confound Removal and Normalization in Practice: A Neuroimaging Based Sex Prediction Case Study

    No full text
    Machine learning (ML) methods are increasingly being used to predict pathologies and biological traits using neuroimaging data. Here controlling for confounds is essential to get unbiased estimates of generalization performance and to identify the features driving predictions. However, a systematic evaluation of the advantages and disadvantages of available alternatives is lacking. This makes it difficult to compare results across studies and to build deployment quality models. Here, we evaluated two commonly used confound removal schemes–whole data confound regression (WDCR) and cross-validated confound regression (CVCR)–to understand their effectiveness and biases induced in generalization performance estimation. Additionally, we study the interaction of the confound removal schemes with Z-score normalization, a common practice in ML modelling. We applied eight combinations of confound removal schemes and normalization (pipelines) to decode sex from resting-state functional MRI (rfMRI) data while controlling for two confounds, brain size and age. We show that both schemes effectively remove linear univariate and multivariate confounding effects resulting in reduced model performance with CVCR providing better generalization estimates, i.e., closer to out-of-sample performance than WDCR. We found no effect of normalizing before or after confound removal. In the presence of dataset and confound shift, four tested confound removal procedures yielded mixed results, raising new questions. We conclude that CVCR is a better method to control for confounding effects in neuroimaging studies. We believe that our in-depth analyses shed light on choices associated with confound removal and hope that it generates more interest in this problem instrumental to numerous applications

    Polarization of microbial communities between competitive and cooperative metabolism

    No full text
    Resource competition and metabolic cross-feeding are among the main drivers of microbial community assembly. Yet the degree to which these two conflicting forces are reflected in the composition of natural communities has not been systematically investigated. Here, we use genome-scale metabolic modelling to assess the potential for resource competition and metabolic cooperation in large co-occurring groups (up to 40 members) across thousands of habitats. Our analysis reveals two distinct community types, which are clustered at opposite ends of a spectrum in a trade-off between competition and cooperation. At one end are highly cooperative communities, characterized by smaller genomes and multiple auxotrophies. At the other end are highly competitive communities, which feature larger genomes and overlapping nutritional requirements, and harbour more genes related to antimicrobial activity. The latter are mainly present in soils, whereas the former are found in both free-living and host-associated habitats. Community-scale flux simulations show that, whereas competitive communities can better resist species invasion but not nutrient shift, cooperative communities are susceptible to species invasion but resilient to nutrient change. We also show, by analysing an additional data set, that colonization by probiotic species is positively associated with the presence of cooperative species in the recipient microbiome. Together, our results highlight the bifurcation between competitive and cooperative metabolism in the assembly of natural communities and its implications for community modulation

    Evolving complex yet interpretable representations: application to Alzheimer’s diagnosis and prognosis

    No full text
    With increasing accuracy and availability of moredata, the potential of using machine learning (ML) methods inmedical and clinical applications has gained considerableinterest. However, the main hurdle in translational use of MLmethods is the lack of explainability, especially when non-linearmethods are used. Explainable (i.e. human-interpretable)methods can provide insights into disease mechanisms but canequally importantly promote clinician-patient trust, in turnhelping wider social acceptance of ML methods. Here, weempirically test a method to engineer complex, yet interpretable,representations of base features via evolution of context-freegrammar (CFG). We show that together with a simple MLalgorithm evolved features provide higher accuracy on severalbenchmark datasets and then apply it to a real word problem ofdiagnosing Alzheimer’s disease (AD) based on magneticresonance imaging (MRI) data. We further demonstrate highperformance on a hold-out dataset for the prognosis of AD.Keywords — grammar evolution, feature representation,interpretability, Alzheimer’s disease, machine learnin
    corecore