5,038 research outputs found

    Variable - temperature scanning optical and force microscope

    Get PDF
    The implementation of a scanning microscope capable of working in confocal, atomic force and apertureless near field configurations is presented. The microscope is designed to operate in the temperature range 4 - 300 K, using conventional helium flow cryostats. In AFM mode, the distance between the sample and an etched tungsten tip is controlled by a self - sensing piezoelectric tuning fork. The vertical position of both the AFM head and microscope objective can be accurately controlled using piezoelectric coarse approach motors. The scanning is performed using a compact XYZ stage, while the AFM and optical head are kept fixed, allowing scanning probe and optical measurements to be acquired simultaneously and in concert. The free optical axis of the microscope enables both reflection and transmission experiments to be performed.Comment: 24 pages, 9 figures, submitted to the journal "Review of Scientific Instruments

    Gorilla: Large Language Model Connected with Massive APIs

    Full text link
    Large Language Models (LLMs) have seen an impressive wave of advances recently, with models now excelling in a variety of tasks, such as mathematical reasoning and program synthesis. However, their potential to effectively use tools via API calls remains unfulfilled. This is a challenging task even for today's state-of-the-art LLMs such as GPT-4, largely due to their inability to generate accurate input arguments and their tendency to hallucinate the wrong usage of an API call. We release Gorilla, a finetuned LLaMA-based model that surpasses the performance of GPT-4 on writing API calls. When combined with a document retriever, Gorilla demonstrates a strong capability to adapt to test-time document changes, enabling flexible user updates or version changes. It also substantially mitigates the issue of hallucination, commonly encountered when prompting LLMs directly. To evaluate the model's ability, we introduce APIBench, a comprehensive dataset consisting of HuggingFace, TorchHub, and TensorHub APIs. The successful integration of the retrieval system with Gorilla demonstrates the potential for LLMs to use tools more accurately, keep up with frequently updated documentation, and consequently increase the reliability and applicability of their outputs. Gorilla's code, model, data, and demo are available at https://gorilla.cs.berkeley.ed

    POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging

    Full text link
    Fine-tuning models on edge devices like mobile phones would enable privacy-preserving personalization over sensitive data. However, edge training has historically been limited to relatively small models with simple architectures because training is both memory and energy intensive. We present POET, an algorithm to enable training large neural networks on memory-scarce battery-operated edge devices. POET jointly optimizes the integrated search search spaces of rematerialization and paging, two algorithms to reduce the memory consumption of backpropagation. Given a memory budget and a run-time constraint, we formulate a mixed-integer linear program (MILP) for energy-optimal training. Our approach enables training significantly larger models on embedded devices while reducing energy consumption while not modifying mathematical correctness of backpropagation. We demonstrate that it is possible to fine-tune both ResNet-18 and BERT within the memory constraints of a Cortex-M class embedded device while outperforming current edge training methods in energy efficiency. POET is an open-source project available at https://github.com/ShishirPatil/poetComment: Proceedings of the 39th International Conference on Machine Learning 2022 (ICML 2022

    Spin-orbit interaction in three-dimensionally bounded semiconductor nanostructures

    Get PDF
    The structural inversion asymmetry-induced spin-orbit interaction of conduction band electrons in zinc-blende and wurtzite semiconductor structures is analysed allowing for a three-dimensional (3D) character of the external electric field and variation of the chemical composition. The interaction, taking into account all remote bands perturbatively, is presented with two contributions: a heterointerface term and a term caused by the external electric field. They have generally comparable strength and can be written in a unified manner only for 2D systems, where they can partially cancel each other. For quantum wires and dots composed of wurtzite semiconductors new terms appear, absent in zinc-blende structures, which acquire the standard Rashba form in 2D systems.Comment: 18 pages, 1 figur

    Recurrences in Driven Quantum Systems

    Full text link
    We consider an initially bound quantum particle subject to an external time-dependent field. When the external field is large, the particle shows a tendency to repeatedly return to its initial state, irrespective of whether the frequency of the field is sufficient for escape from the well. These recurrences, which are absent in a classical calculation, arise from the system evolving primarily like a free particle in the external field.Comment: 10 pages in RevTeX format, with three PS files appende

    The Phantom Bounce: A New Oscillating Cosmology

    Full text link
    An oscillating universe cycles through a series of expansions and contractions. We propose a model in which ``phantom'' energy with p<ρp < -\rho grows rapidly and dominates the late-time expanding phase. The universe's energy density is so large that the effects of quantum gravity are important at both the beginning and the end of each expansion (or contraction). The bounce can be caused by high energy modifications to the Friedmann equation, which make the cosmology nonsingular. The classic black hole overproduction of oscillating universes is resolved due to their destruction by the phantom energy.Comment: Four pages, one figure. V3: version to appear in JCA

    A proposal for detecting the spin of a single electron in superfluid helium

    Full text link
    The electron bubble in superfluid helium has two degrees of freedom that may offer exceptionally low dissipation: the electron's spin and the bubble's motion. If these degrees of freedom can be read out and controlled with sufficient sensitivity, they would provide a novel platform for realizing a range of quantum technologies and for exploring open questions in the physics of superfluid helium. Here we propose a practical scheme for accomplishing this by trapping an electron bubble inside a superfluid-filled opto-acoustic cavity.Comment: Main text: 5 pages, 5 figures. Supplement: 11 pages, 2 figures, 1 tabl

    Inaccessible Singularities in Toral Cosmology

    Get PDF
    The familiar Bang/Crunch singularities of classical cosmology have recently been augmented by new varieties: rips, sudden singularities, and so on. These tend to be associated with final states. Here we consider an alternative possibility for the initial state: a singularity which has the novel property of being inaccessible to physically well-defined probes. These singularities arise naturally in cosmologies with toral spatial sections.Comment: 10 pages, version to appear in Classical and Quantum Gravit
    corecore