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and variation of the chemical composition. The interaction, taking into account all

remote bands perturbatively, is presented with two contributions: a heterointerface

term and a term caused by the external electric field. They have generally comparable

strength and can be written in a unified manner only for 2D systems, where they

can partially cancel each other. For quantum wires and dots composed of wurtzite

semiconductors new terms appear, absent in zinc-blende structures, which acquire the

standard Rashba form in 2D systems.
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1. Introduction

Systems with lowered space symmetry are generally characterized by spin-split energy

states. This is a manifestation of the relativistic interaction of moving magnetic angular

momentum with electric field [1]. In the physics of semiconductor nanostructures, we

conventionally identify two reasons for the effect: lack of inversion symmetry of the unit

cells of the constituent materials [2, 3, 4, 5] and the presence of the structural inversion

asymmetry (SIA) on macroscopic scale, much larger than the unit cell [6, 7].

Major results in this field have been obtained by using only symmetry arguments,

with the method of invariants [8], which has become the most efficient instrument to

studying electron states in semiconductors [9]. However, this method has a drawback,

for its phenomenological nature does not yield a distinct link between bulk materials

and heterostructures. Each reduction in dimensions, and more generally, each loss of

elements of symmetry including a result of the application of strong enough external

fields, creates a new system that calls for an independent analysis [10, 11, 12].

Another successful phenomenological tool, the k · p method, the only extra

requirement of which is mean-field approximation [9], does provide the missing link

along with its limits of applicability [13]. For two-dimensional (2D) electron systems,

this method has already proved to be capable of specifying the SIA mechanisms of the

spin-orbit interaction and identifying them as the heterointerface induced and external

electric field induced [7, 14, 15, 16, 17]. Knowledge of their strengths is crucial to band

structure engineering aimed at manipulation with the spin degree of freedom, which

finds important applications [18, 19, 20].

An interesting situation holds for quantum dots. Their lateral confinement is

usually modelled as parabolic, validating the inclusion of only 1D interface spin-orbit

interaction, see, e.g., [21]. However, attempts to make allowance also for the spin-orbit

interaction due to a lateral field have been made in the past [22]. This may be decisive

for quantum dots based on piezoelectric materials such as GaN/AlN, where complex

distributions of strain generate 3D pictures of strong (of the order of 106 V/cm) ‘external’

electric fields [23, 24, 25, 26, 27]. In addition to structures with 3D confinement,

even nominally 1D and 2D electron systems have their realizations in arrangements

with boundaries and contacts inducing electric fields acting on the interior of the

systems. That is why a 1D spin-orbit interaction model may fail there. Indeed, it may

underestimate by an order of magnitude [28] the electron spin splitting in GaN/AlN

quantum wells, see e.g. [29].

We use the k · p method to systematically include the effect of an external electric

field of arbitrary profile and general 3D variation in chemical composition on the spin-

orbit interaction in zinc-blende and wurtzite heterostructures. Previous studies dealt

with either 3D composition profile and arbitrary external electric field, considering them

in detail only for cubic materials [14], or with 1D electric fields for wurtzite materials

[28]. In the former work, the basis functions comprised spin-orbit interaction. As a

consequence, two different effects, describing the position-dependent effective mass and
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governing the spin-orbit interaction, combined, and some of the spin-orbit terms were

not singled out. An incomplete picture of the spin-orbit interaction resulted in the

conclusion that the heterointerface contribution is small if the spin-orbit interaction

parameter weakly varies with composition. We find it more convenient to use the

original effective-mass method’s spinless basis [30] to obtain all the necessary terms.

After analysis of them, we found that the heterointerface contribution should always be

taken into account.

The study of wurtzite [28], borrowing the method used for zinc-blende materials

[7, 16, 17], was limited to the eight-band Kane-type model [31]. In that method,

small (valence-band) envelope functions are excluded, resulting in a conduction

band Hamiltonian that parametrically depends on its own eigenenergy [32]. Apart

from neglecting remote bands whose contributions have never been evaluated

(with questionable relevance for wide-bandgap materials), such a Hamiltonian has

applicability problems, e.g. when time-dependent external fields are considered. Our

resulting SIA spin-orbit interaction terms for conduction band states near the Brillouin

zone centre in zinc-blende and wurtzite semiconductors are Hermitian and energy-

independent. Any remote bands can be taken into account if proper material parameters

are known.

This paper is organised as follows. In section 2, we make a perspective analysis

of the heterointerface- and external electric field-induced SIA mechanisms and find

that they should generally be considered on equal footing. In section 3, we introduce

a multi-band system of envelope-function equations used in section 4 to derive spin-

orbit terms entering conduction band envelope-function equations, with details being

given in appendix A. The general expressions for the spin-orbit interaction terms are

then analysed for zinc-blende and wurtzite heterostructures. We discuss the results in

section 5.

2. Heterointerface- and external electric field-induced terms: a comparison

The heterointerface spin-orbit contribution first appears in the third order [14] of the

Löwdin perturbation scheme [9, 33]. It is proportional to the difference in the spin-orbit

interaction parameters for the semiconductors of the heterojunction. Analysing the

‘exact’ expression for the parameter of the interface term in the Kane model [7, 16, 17],

we see that there should also be a contribution due to the valence band offset, present

even when the spin-orbit interaction parameter does not vary with composition. Such a

term, proportional to the band offset and the spin-orbit interaction parameter, will be

available only if we consider the fourth order of the perturbation scheme.

The electric field-induced contribution, which is proportional to the external electric

field and the spin-orbit interaction parameter, arises only in the fourth order of the

perturbation scheme if the Kohn-Luttinger basis functions [30] do not include spin-orbit

interaction. Otherwise, Leibler showed that inclusion of the spin-orbit interaction in

the basis makes both contributions present as third-order corrections [14]. For typical
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Figure 1. A single-heterojunction potential well, showing the ground eigenenergy and

its envelope function.

heterostructures, the spin-orbit interaction energy is less or of the order of the band

offsets. This, together with conventional arguments discussed in section 4, makes the

original method’s spinless basis [30] preferable. Then, such a perturbative classification

of the interface and electric field-induced terms might indicate that the former term is

stronger than the latter.

To find out whether this is so, let us consider them for a quantum well grown

along the z-axis and having for simplicity only one heterojunction located at z = 0 (see

figure 1). With only Rashba-type spin-orbit contributions present, the effective mass

equation for the electron envelope functions Φn, which correspond to the steady state

eigenenergies ǫn, can be written as H2DΦn = ǫnΦn, with the Hamiltonian:

H2D =
~
2k2

2m∗
+ U(z) +W (z) +

(

R1δ (z) +R2
dW (z)

dz

)

(kxσy − kyσx) , (1)

where ~k is the momentum operator, m∗ is the effective mass, U(z) = Θ(−z)δUs and

W (z) are the potential energy of on electron in the crystalline potential and external

scalar potential, respectively, Θ(z) is the Heaviside step function, δUs is the conduction

band offset, δ(z) is the Dirac delta function, σ = (σx, σy, σz) is the Pauli matrix vector

and R1 and R2 are material parameters. The term proportional to R1 (R1-term) defines

the interface spin-orbit interaction. It is small by the parameter presented with a sum

δ∆/Eg+∆δUv/E
2
g , where δ∆ is the difference of the valence band spin-orbit splittings for

the two materials forming the heterojunction, ∆ is the valence band spin-orbit splitting

for the quantum well material, δUv is the valence band offset and Eg is the bandgap. The

term proportional to R2 (R2-term) is the electric field-induced spin-orbit interaction. It

is small by a parameter that is of the order of ∆〈W 〉/E2
g , where 〈W 〉 is a characteristic

potential energy of an electron in the external scalar potential.

Following [17], we consider the HamiltonianH2D0 of the zeroth-order approximation

in the spin-orbit interaction:

H2D0 =
~
2k2

2m∗
+ U(z) +W (z). (2)
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The corresponding envelope functions are designated as Φ0n ≡ |n): H2D0Φ0n = ǫnΦ0n.

Using the eigenfunctions |n) of the Hamiltonian H2D0 and detailing diagonal matrix

elements of the commutator [kz, H2D0], which are zero, we immediately obtain

δUs(n|δ (z) |n) = (n|
dW (z)

dz
|n), (3)

holding for any subband n. Comparing this identity with the spin-orbit interaction

part of (1), we see that the terms proportional to R1 and R2 can both be written as

a single interface contribution, found by Pfeffer and Zawadzki [17]. We argue that

the identity (3) suggests that both spin-orbit terms can also be written as a single one

proportional to the external electric field. This makes them mutually indistinguishable if

phenomena involving intersubband transitions are not of interest, so that only a single

effective material parameter can be extracted from experiment. In our opinion, the

form requiring knowledge of the average electric field is preferable. The electric field

can easily be estimated from the electrostatics of the semiconductor system involved,

but it is impossible to make a direct evaluation of the magnitude of the envelope function

at the heterointerface without numerical simulations. Analysis of a two-heterointerface

quantum well does not alter the above conclusion.

The identity (3) also helps us to make a simple comparison of the R1- and R2-terms,

which involves the analysis of two small indicating parameters: δ∆/Eg +∆δUv/E
2
g and

∆δUs/E
2
g , respectively. As typically |δUs| ∼ |δUv|, we immediately conclude that if the

spin-orbit interaction energies for the materials of the structure differ essentially, that

is |δ∆| ∼ ∆, the heterointerface term dominates, as found by Leibler [14]. Otherwise,

if |δ∆| ≪ ∆, both terms should generally be retained, contrary to the conclusion in

[14]. As examples, consider two popular semiconductor pairs forming heterostructures:

GaAs/AlAs and GaN/AlN, taking the material parameters from [34]. For GaAs/AlAs,

∆ ≈ 0.34 eV, δ∆ ≈ −60 meV, Eg ≈ 1.52 eV, δUs ≈ 1 eV and δUv ≈ −0.53 eV. For the

pair GaN/AlN, ∆ ≈ 14 meV, δ∆ ≈ 5 meV, Eg ≈ 3.5 eV, δUs ≈ 2 eV and δUv ≈ −0.7 eV.

The indicating parameters are comparable, |δ∆| ≪ ∆, so we should keep both terms.

Below, in section 4, we produce a more accurate evaluation for these two semiconductor

pairs and show that both systems have an ‘accidental’ set of parameters leading to

somewhat different conclusions. In the above estimates, we do not take into account

remote bands whose effect has never been evaluated. For electron states in quantum

wires and dots, the R1- and R2-type terms cannot be reduced to a unified form because

the operators kx and/or ky do not commute with the Hamiltonian, and the identity (3)

cannot be directly used in the spin-orbit interaction terms of the Hamiltonian.

In summary, the heterointerface- and external electric field-induced terms can be

of comparable strength and, while being mutually indistinguishable for 2D electron

systems, they cannot be written in a unified form for quantum wires and quantum dots.

These make them be discrete and equally important.
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3. The multi-band system of envelope-function equations

We now proceed to derive the SIA-governed spin-orbit terms using the k · pmethod. We

consider a heterostructure composed of two semiconductors with the net single-particle

potential energy of electron, which will be called ‘potential’ for brevity, U = U (r):

U = U1 + f [U2 − U1] ≡ U1 + fδU, (4)

where U1 = U1 (r) and U2 = U2 (r) are the periodic lattice potentials of the nominally

potential well material and the barrier material, respectively. We suppose that the

phenomenological function f ≡ f (r), which defines the profile of the structure, is of

the order of unity or less even at the heterointerfaces [14, 35]. Ideally, f can even be a

step-like function taking the values f = 0 in the region of the potential well material,

and f = 1 in the region of the barrier material [13]. It can have a variation in 1D,

2D or 3D to represent a potential well, a quantum wire or a quantum dot, respectively.

The final expression will have a local character allowing plain generalization for an

arbitrary composition. We set the only requirement that the semiconductors composing

the structure are not too dissimilar, so that δU can be treated as a small perturbation

as compared to the basis potential U1.

In the mean-field approximation, the Schrödinger equation with the relativistic

spin-orbit interaction term is [1]:
(

~
2k2

2m0

+ U +
~
2 [∇U × k] · σ

4m2
0c

2
+W

)

Ψ (r) = ǫΨ (r) . (5)

Here m0 is the free electron mass and c is the velocity of light in vacuum. The external

scalar potential W = W (r) is weak, and we neglect its direct relativistic effect.

Dealing with states near the Brillouin zone centre, it is convenient to use the

complete set of Kohn-Luttinger functions [30], with the unit-cell normalized periodic

parts un0 = un0 (r) ≡ |n〉 specified as
(

~
2k2

2m0
+ U1

)

|n〉 = ǫn0|n〉, (6)

where ǫn0 is the nth band edge energy. The relativistic effect of the potential U1 is not

included in the basis, but processed as a perturbation. We define the nth band envelope

function in r-representation as An = An (r) with

Ψ (r) =
∑

n

An |n〉, (7)

where the summation is over all bands.

Consider the following k · p system in r-representation, which is obtained by

treating the functions f (r) and W (r) as ‘gentle’ [30]. This is a standard procedure

of the envelope-function method [35], which neglects all ‘central cell’-like corrections
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due to a rapid variation in the function f (r) at the heterointerfaces [13].
(

ǫn0 +
~
2k2

2m0
+W (r)

)

An +
∑

n′

~k · pnn′

m0
An′

+
∑

n′

(

H
(1so)
nn′ + f (r)H

(δso)
nn′ + f (r) δUnn′

)

An′ = ǫAn,
(8)

where

H
(1so)
nn′ =

~
2 [∇U1 × k]nn′ · σ

4m2
0c

2
, (9)

and

H
(δso)
nn′ =

~
2 [∇δU × k]nn′ · σ

4m2
0c

2
. (10)

We define the matrix elements: pnn′ = 〈n | ~k | n′〉, δUnn′ = 〈n | δU | n′〉 and

[∇U1 × k]nn′ ≡ 〈n | [∇U1 × k] | n′〉. The all-band system of equations (8) is valid for

slowly varying envelope functions An [9].

We do not explicitly include the strain Hamiltonian into consideration, important

for lattice-mismatched pairs, in particular for GaN/AlN. The proper procedure, detailed,

e.g., in [36] (see also [37]), would lead to redundant complications, not essential for our

results. It suffices to take into account here that the piezoelectric field due to strain

along with the possible spontaneous polarization field has contributed to the ‘external’

potential W (r). For attainable values of strain, the influence of the deformation

potentials on the band edge energies ǫn0, ‘offsets’ δUnn′ and the matrix elements H
(1so)
nn′

and H
(δso)
nn′ is too weak to be included in the spin-orbit terms being derived.

Ignoring the central cell corrections, some of them contributing to the spin-orbit

interaction [13], we should be aware that there is a number of heterointerface-related

effects that cannot be accounted for [12]. The corresponding material parameters are

generally not expressed via bulk parameters of the constituent materials, and depend

on microscopic structure of the heterointerface and its crystalline orientation [38].

Their estimates are scarce [39, 40, 41], and evidence that they produce a noticeable

contribution to the spin-orbit interaction is currently absent. Possible speculations that

they alone could explain the huge electron spin splitting in GaN/AlN quantum wells

[29] have yet to have some grounds in first-principle band-structure calculations.

We also omitted the k-linear spin-orbit interaction term due to the potential U1,

see [2, 42]. In the third perturbation order (with two operators ~kpnn′/m0), it generates

k-cubic bulk inversion asymmetry spin-orbit interaction terms, which are conventionally

called the Dresselhaus term in zinc-blend materials and the Rashba term for wurtzite

[43]. Their expressions are known [2, 44]. One could allow for the position dependence

of these terms originating from a k-linear spin-orbit interaction contribution due to

the potential f(r)δU , which is also omitted from equation (8). Its inclusion may be

consistent only for special cases of weakly localized electron states, where the barrier

penetration is very essential. This term describes bulk inversion asymmetry position-

dependent spin-orbit interaction. Also, we will not consider k-linear bulk and the related
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position-dependent terms for wurtzite structures appearing through the second-order

perturbation (due to H
(1so)
nn′ +f (r)H

(δso)
nn′ and ~kpnn′/m0) on the same grounds as above:

the expression for the bulk term is known, see [42], and an analogous position-dependent

term has a very week effect on strongly localized states.

4. Single-band spin-orbit Hamiltonian

To allow for the interface spin-orbit interaction, we should deal with at least the third-

order perturbation term that is a ‘product’ of f (r)H
(δso)
nn′ and two ~kpnn′/m0. For

a simple conduction band with the index m = s, the correction of the 3rd order in

perturbation H′ is, see Appendix A, equation (A.14):

H̃(3)
ss =

1

2
{H2,S2}ss , (11)

where the braces stand for a commutator, andH2 is a part of the perturbationH′ having

only non-diagonal couplings of the s-band with remote bands; S2 is given by (A.16).

Using H
(δso)
ss = pss = 0, which holds both for zinc-blende and wurtzite materials at the

Γ point of the Brillouin zone, with the help of expression (A.16), we have:

H̃(3)
ss =

∑

l,l′

H ′

slH
′

ll′H
′

l′s

ωsl ωsl′
. (12)

To obtain the SIA spin-orbit term originating due to the external potential

W (r) supplemented with the crystalline potential f (r) δUnn′ , we deal with the fourth

perturbation order in a product of H
(1so)
nn′ , W (r)δnn′ + f (r) δUnn′ and two ~kpnn′/m0.

Here δnn′ is the Kronecker delta. We do not consider a contribution from f (r)H
(δso)
nn′ as

put in the place of H
(1so)
nn′ . It may produce a noticeable effect only if two conditions are

satisfied: we treat weakly localized states with high enough probability for the electron

to be in the barrier material, and H
(δso)
nn′ ∼ H

(1so)
nn′ . The latter condition would mean that

the interface contribution (12) dominated over the electric field-induced one (in terms of

section 2, δ∆ ∼ ∆) canceling the very consideration of anything farther than the third

perturbative order.

If we included the spin-orbit interaction H(1so) in the zero-order Hamiltonian H0,

we would not have to go down to the fourth perturbative order, as only the third will be

required [14], expressed as a product of W (r) + f (r) δUnn′ and two ~kpnn′/m0. Then,

to be consistent, we would have to use the spinor basis functions uso
n0 that could not be

treated as zero-order combinations of the functions un0 [30]. Instead, they should be

constructed using not less than the first-order functions:

ũso
n0 = un0 +

∑

n′

′H
(1so)
n′n

ωnn′

un′0, (13)

where the summation does not include degenerate terms. Using the functions (13) with

the third-order perturbative expressions [14], the final result will still have a character

of the fourth-order smallness. We consistently treat H(1so) as a perturbation to conform

with the conventional classification of the basis functions.
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The correction of the fourth order is, see appendix A, equation (A.14),

H̃(4)
ss =

1

2
{H2,S3}ss −

1

24
{{{H2,S1} ,S1} ,S1}ss , (14)

where S1 and S3 are given by (A.15) and (A.17). Again, using the properties

H
(1so)
ss = pss = 0 and the expressions (A.15) and (A.17), we have

H̃(4)
ss =

∑

l,l′,l′′

H ′

slH
′

ll′H
′

l′l′′H
′

l′′s

ωsl ωsl′ ωsl′′
−

1

2

∑

l,l′

(

1

ω2
sl ωsl′

+
1

ωsl ω2
sl′

)

× (H ′

slH
′

ll′H
′

l′sH
′

ss +H ′

ssH
′

sl′H
′

l′lH
′

ls +H ′

slH
′

lsH
′

sl′H
′

l′s) .

(15)

Another property we will use below is that the matrix element δUnn′ is finite only for

functions |n〉 and |n′〉 of the same symmetry.

4.1. Zinc-blende semiconductors

For the conduction band in structures based on zinc-blende semiconductors, expressions

(12) and (15) are greatly simplified as we can neglect the matrix elements H
(1so)
sl and

H
(δso)
sl for any l. To prove it, we use the following arguments. Firstly, the spin-orbit

interaction operator can be written as the product of the spin and orbital angular

momentum near the atomic nuclei, where the interaction is essential. Secondly, the

zone-centre function us0, which transforms accordingly to the Γ1 representation of the

space group Td, is composed of spherically symmetric atomic s orbitals with zero angular

momentum.

The functions un0 can be chosen real, so that

δUnn′ = δUn′n, pnn′ = −pn′n, H
(1so)
nn′ = −H

(1so)
n′n . (16)

Using these properties and changing the band summation indices, we have the following

for the third perturbative order from (12):

H̃(3)
ss =

∑

l,l′

~
2(pα)sl H

(δso)
ll′ (pβ)l′s

2im2
0 ωsl ωsl′

[∇αf kβ −∇βf kα] , (17)

where α, β = x, y, z, and summation over these indices is implied here and henceforth.

For the fourth perturbative order, only the first term on the right-hand side of

equation (15) gives a finite contribution:

H̃(4)
ss =

∑

l,l′

~
2(pα)sl H

(1so)
ll′ (pβ)l′s

im2
0 ω2

sl ωsl′
[∇αW kβ −∇βW kα]

+
∑

l,l′,l′′

~
2(pα)sl δUll′ H

(1so)
l′l′′ (pβ)l′′s

im2
0 ωsl ωsl′ ωsl′′

[∇αf kβ −∇βf kα] .

(18)

Finally, we arrive at the traditionally looking spin-orbit interaction terms [1], now

generated by both the external scalar potential and variation in the chemical composition

of the structure, in the form first given in [14], Hso = H̃
(3)
ss + H̃

(4)
ss :

Hso = R1ZB [∇f (r)× k] · σ +R2ZB [∇W (r)× k] · σ, (19)
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where

R1ZB =
∑

l,l′

~
4(px)sl ([∇δU × k]z)ll′ (py)l′s

4im4
0 c

2ωsl ωsl′

+
∑

l,l′,l′′

~
4(px)sl δUll′ ([∇U1 × k]z)l′l′′ (py)l′′s

2im4
0 c

2ωsl ωsl′ ωsl′′
,

(20)

and

R2ZB =
∑

l,l′

~
4(px)sl ([∇U1 × k]z)ll′ (py)l′s

4im4
0 c

2

(

1

ω2
sl ωsl′

+
1

ωsl ω2
sl′

)

. (21)

Note that the heterointerface contribution, which is proportional to the parameter R1ZB,

originates not only due to the difference in the spin-orbit interaction energies, as given

with the first term in the right-hand side of (20), but also due to the finite matrix

elements δUll′, see the second term of (20). All items are present in [14], but the latter,

because of the chosen spinor basis, contributed to the position-dependent effective mass

and was not analysed.

For illustrative purposes, let us limit ourselves to the truncated eight-band Kane

model, with the degenerate valence band edge’s functions uX0, uY 0 and uZ0 transforming

as x, y and z, respectively, in accordance with the Γ15 representation of the space group

Td. If we introduce P = i 〈s | ~kx | X〉, Eg = ωsX , δUv = δUXX and

∆so

3i
=

~
2 ([∇U1 × k]z)XY

4m2
0 c

2
,

δ∆so

3i
=

~
2 ([∇δU × k]z)XY

4m2
0 c

2
, (22)

we obtain

R1ZB = −
~
2P 2

3m2
0E

2
g

(

δ∆so +
2δUv∆so

Eg

)

, (23)

and

R2ZB = −
2~2P 2∆so

3m2
0E

3
g

, (24)

which coincide with the known result (see [7, 16, 17] and put the eigenenergy entering the

Hamiltonians there ǫ = ǫs0), for ∆so, |δ∆so|, |δUv| ≪ Eg and 1D external electric field.

Using GaAs/AlAs band parameters [34], see also section 2, we have R1ZB ≈ 4 eVÅ2

and R2ZB ≈ −6 Å2. Note the different signs of these parameters. They partially cancel

each other for GaAs/AlAs quantum wells, which is seen if we use the identity (3). If

the conduction band offset were δUs = −R1ZB/R2ZB ≈ 0.7 eV, they would cancel each

other exactly (actually δUs ≈ 1 eV). In intentionally asymmetric quantum wires and

dots with strong confinement, this cancellation will be mitigated, and more pronounced

spin splittings will be attained.

4.2. Wurtzite semiconductors

For Brillouin zone-centre conduction band states in structures based on wurtzite

semiconductors, the band edge function us0 transforms as belonging in the Γ1
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representation of the space group C6v. It is formed of atomic s and p orbitals, so

that H
(1so)
sl and H

(δso)
sl are finite [42].

The basis functions un0 can still be chosen real, producing the identities (16). Then

we have, for the 3rd perturbative order from (12),

H̃(3)
ss =

∑

l,l′

~
2(pα)sl H

(δso)
ll′ (pβ)l′s

2im2
0 ωsl ωsl′

[∇αf kβ −∇βf kα]

+
∑

l,l′

~
2(pα)sl (pβ)ll′ H

(δso)
l′s

im2
0 ωsl ωsl′

[kα (∇βf) + (∇αf) kβ] .

(25)

We have used the identity

kαkβ f − f kαkβ = −ikα (∇βf)− i (∇αf) kβ. (26)

For the fourth perturbative order, similar to the zinc-blende case, the second term

on the right-hand side of equation (15) gives no contribution. We have

H̃(4)
ss =B1αβ [∇αW kβ −∇βW kα] +B2αβ [kα (∇βW ) + (∇αW ) kβ]

+ C1αβ [∇αf kβ −∇βf kα] + C2αβ [kα (∇βf) + (∇αf) kβ] .
(27)

where

B1αβ =
∑

l,l′

~
2(pα)sl (pβ)ll′ H

(1so)
l′s

im2
0 ω2

sl ωsl′
+

~
2(pα)sl H

(1so)
ll′ (pβ)l′s

im2
0 ω2

sl ωsl′
, (28)

B2αβ =
∑

l,l′

~
2(pα)sl (pβ)ll′ H

(1so)
l′s

im2
0 ωsl ω2

sl′

, (29)

C1αβ =
∑

l,l′,l′′

~
2(pα)sl δUll′ H

(1so)
l′l′′ (pβ)l′′s

im2
0 ωsl ωsl′ ωsl′′

+
~
2H

(1so)
sl (pα)ll′ δUl′l′′ (pβ)l′′s
im2

0 ωsl ωsl′ ωsl′′
, (30)

C2αβ =
∑

l,l′,l′′

~
2(pα)sl (pβ)ll′ δUl′l′′ H

(1so)
l′′s

im2
0 ωsl ωsl′ ωsl′′

+
~
2H

(1so)
sl (pα)ll′ (pβ)l′l′′ δUl′′s

im2
0 ωsl ωsl′ ωsl′′

, (31)

Finally, letting the wurtzite c-axis be along the z-direction, we have Hso =

H̃
(3)
ss + H̃

(4)
ss :

Hso =R1WZ

(

[∇f × k]x σx + [∇f × k]y σy

)

+R′

1WZ [∇f × k]z σz

+ α1 [(∇yf) kz + ky (∇zf)] σx − α1 [(∇xf) kz + kx (∇zf)] σy

+ α2 [(∇xf) ky + kx (∇yf)] σz

+R2WZ

(

[∇W × k]x σx + [∇W × k]y σy

)

+R′

2WZ [∇W × k]z σz

+ β1 [(∇yW ) kz + ky (∇zW )]σx − β1 [(∇xW ) kz + kx (∇zW )] σy

+ β2 [(∇xW ) ky + kx (∇yW )] σz.

(32)

The material parameters entering here are given in appendix B. The structure of this

complicated expression resembles the net SIA spin-orbit Hamiltonian for zinc-blende
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systems (19). The differences are plain. Due to the anisotropy of the wurtzite,

R1WZ 6= R′

1WZ and R2WZ 6= R′

2WZ in the Rashba terms. Another difference consists

in the presence of new contributions due to the finite matrix elements of the spin-orbit

interaction H
(1so)
sl and H

(δso)
sl between the conduction and remote bands. New terms are

proportional to α1, α2, β1 and β2, with α1 6= α2, β1 6= β2 due to the anisotropy of the

wurtzite. These terms are reduced to the conventional form of the Rashba spin-orbit

interaction for 1D external electric field and variation in the chemical composition, if

we put ∇xW = ∇yW = ∇xf = ∇yf = 0, ∇zW 6= 0 and ∇zf 6= 0, which is easily seen

from expression (32).

It is interesting to learn which bands contribute to make α1, α2, β1 and β2 finite

(see appendix B). It can be deduced using the tables of direct products of irreducible

representations of the space group C6v, see [47]: Γ6 × Γ6 = Γ1 + Γ2 + Γ6, Γ2 × Γ6 = Γ6,

and Γ1 × Γj = Γj for any j. We should also take into account that polar vectors (e.g.

k) transform as Γ1 + Γ6, while axial vectors (e.g. [∇U1 × k] ) transform as Γ2 + Γ6

[9]. Then we immediately conclude that bands with symmetries Γ1 and Γ6 define the

strength of the parameters α1 and β1. Hence, they are finite even in the truncated

bands Kane-like model with the nearest valence bands Γv
6 and Γv

1. The term involves

new matrix elements, not expressed via known band parameters [34]: 〈Γv
6 | ~ky | Γ

v
1〉 and

〈s | [∇U1 × k]x | Γv
6〉, see also [42].

For parameters α2 and β2, in a similar way, there should be finite contributions from

the states with symmetries Γ2 and Γ6. This turns α2 and β2 to zero in the truncated

bands model. The bands Γ2 do not appear in the pseudopotential calculations [48, 49],

which probably means that they are very remote.

Let us consider only the nearest valence bands Γv
6 and Γv

1 to estimate R1WZ , R
′

1WZ ,

R2WZ and R′

2WZ for GaN/AlN. We can use the expressions (23) and (24). As previously,

the material parameters are taken from [34]. We obtain R2WZ = R′

2WZ ≈ −0.01 Å2.

Accidentally, due to different signs and comparable strength of the terms entering

the parenthesis of expression (23), we have vanishingly small R1WZ = R′

1WZ ≈

0.7 meVÅ2. The external electric field-induced spin orbit interaction dominates because

the conduction band offset δUs ≈ 2 eV, so that |R2WZδUs| = 20 meVÅ2 ≫ R1WZ . While

the value of the effective Rashba parameter for GaN/AlN is only one-hundredth of that

for the GaAS/AlAs system, very strong electric fields acting on electrons in GaN/AlN

can induce large spin splitting of electron states, comparable to that in narrow-bandgap

materials [28].

5. Conclusions

In the k · p method, we derived SIA spin-orbit interaction terms for conduction

band states near the Brillouin zone centre in zinc-blende and wurtzite semiconductor

heterostructures taking into account all remote bands. The results are applicable

to quantum wells, wires or dots. Electric field-induced terms and heterointerface

contributions were considered, both generally having comparable strength. They can
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be written in a unified manner only for 2D systems. The resulting expression for the

spin-orbit Hamiltonian (19) in zinc-blende materials takes the conventional form of

the relativistic spin-orbit interaction [1]. The Kane model is adequate to establish this

form, with other remote bands only changing the values of the material parameters. For

wurtzite materials, the net SIA spin-orbit Hamiltonian (32) has a complicated form due

to the anisotropy of the wurtzite and new contributions, which appear owing to finite

matrix elements of the spin-orbit interaction H
(1so)
sl and H

(δso)
sl between the conduction

and remote bands. Knowledge of the parameters of the Kane model alone is insufficient

to write the spin-orbit Hamiltonian for wurtzite. The effect of remote bands is yet to

be evaluated.

We analysed two popular semiconductor pairs, GaAs/AlAs and GaN/AlN, with

the goal of establishing the mechanisms actually governing SIA spin-orbit interaction

in heterostructures composed of these materials. Both pairs have ‘accidental’ sets of

parameters strongly differing from the ‘general’ picture. For 2D systems GaAs/AlAs,

the interface and external electric field-induced contributions are comparable and have

different signs partially canceling each other and significantly reducing the net spin

splitting. In asymmetric quantum wires and dots with strong enough confinement,

this cancellation will be mitigated, and relatively more pronounced spin splittings can

be attained. For the systems based on GaN/AlN, the nominally interface-induced

contribution is very small as compared to the external electric field-induced one. The

evaluations were based on parameters available for the Kane model alone [34], without

remote bands.
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Appendix A. Löwdin perturbation scheme up to the fourth order

We sketch the Löwdin perturbation scheme [33], which is an efficient tool for the k · p

diagonalization treatment [14, 35, 45, 46]. We follow [9] and then derive all necessary

elements for the fourth-order correction. The k · p system (8) can be presented as:

(H0 +H′)A = ǫA. (A.1)

Here H0 is the Hamiltonian of the zero-order approach:

H0nn′ = ǫn0δnn′, (A.2)

where δnn′ is the Kronecker delta, and H′ = H1 +H2 is the perturbation. The all-band

Hamiltonian is being decomposed into the block of m-indexed states, whose mutual

interaction is taken into account exactly, and a block of ‘remote’ l-indexed bands, treated

as a perturbation. Here our m-class block consists of only a single conduction band
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m = s, but we are preserving the general notations with indices m, m′, m′′, etc all

belonging to the m class, following [9]. The perturbation H1 does not contain elements

of interaction of m-indexed bands with other bands. In other words, it is already block-

diagonal. It is these elements of m-l band interaction that are contained in H2.

The canonical transformation of the envelope functions

Ã = e−SA (A.3)

with an anti-Hermitian (S+ = −S) matrix S results in a set of equations

H̃ Ã = ǫÃ (A.4)

with

H̃ =e−SHeS. (A.5)

The properly chosen S must provide a decomposition of the whole system into a set of

equations for m-bands and an abandoned set of equations for other bands. Expanding

exp(S) in a series

eS = 1 + S+
1

2
S2 +

1

3!
S3 + ..., (A.6)

we obtain

H̃ =
∞
∑

n=0

1

n!
{H,S}(n) . (A.7)

Here

{H,S}(0) = H, {H,S}(1) = {H,S} , (A.8)

{H,S}(2) = {{H,S} ,S} , ... (A.9)

Let us consider

S = S1 + S2 + S3, (A.10)

where Sn is the matrix of the nth order in H′. The elements Sn are defined using the

recursive equations

{H0,S1}+H2 = 0, (A.11)

{H0,S2}+ {H1,S1} = 0, (A.12)

{H0,S3}+ {H1,S2}+
1

3
{{H2,S1} ,S1} = 0. (A.13)

Then the transformed Hamiltonian H̃ takes the form

H̃ =H0 +H1 +
1

2
{H2,S1}+

1

2
{H2,S2}

+
1

2
{H2,S3} −

1

24
{{{H2,S1} ,S1} ,S1}

(A.14)

to the fourth order in H′ inclusively, having no elements of m-l band interaction. It is

interesting to note that an apparently similar perturbation method given by Luttinger



Spin-orbit interaction in three-dimensionally bounded semiconductor nanostructures 15

and Kohn [30] actually differs from the Löwdin’s in an attempt to make a redundant

diagonalization inside the remote bands block.

The matrices S1 and S2, which are derived from equations (A.11) and (A.12), are

known [9]:

S1ml = −
H ′

ml

ωml

, (A.15)

where ωnn′ = ǫn0 − ǫn′0, and

S2ml =
∑

m′

H ′

mm′H ′

m′l

ωml ωm′l

−
∑

l′

H ′

ml′H
′

l′l

ωml ωml′
. (A.16)

Now using equations (A.13), (A.15) and (A.16), along with the anti-Hermiticity of

S, we obtain

S3ml =
∑

m′,l′

H ′

ml′H
′

l′m′H ′

m′l

3 ωml

(

1

ωm′l ωm′l′
+

2

ωml′ ωm′l

+
1

ωml′ ωm′l′

)

+
∑

m′,l′

H ′

mm′H ′

m′l′H
′

l′l

ωml

(

1

ωm′l ωm′l′
+

1

ωml′ ωm′l′

)

−
∑

m′,m′′

H ′

mm′H ′

m′m′′H ′

m′′l

ωml ωm′l ωm′′l

−
∑

l′,l′′

H ′

ml′H
′

l′l′′H
′

l′′l

ωml ωml′′ ωml′
.

(A.17)

Appendix B. Material parameters entering expression (32)

R1WZ =
∑

l,l′

~
4(py)sl ([∇δU × k]x)ll′ (pz)l′s

4im4
0 c

2ωsl ωsl′

+
∑

l,l′,l′′

~
4(py)sl δUll′ ([∇U1 × k]x)l′l′′ (pz)l′′s

4im4
0 c

2ωsl ωsl′ ωsl′′

+
∑

l,l′,l′′

~
4(py)sl ([∇U1 × k]x)ll′ δUl′l′′ (pz)l′′s

4im4
0 c

2ωsl ωsl′ ωsl′′

+
∑

l,l′,l′′

~
4 ([∇U1 × k]x)sl (py)ll′ δUl′l′′ (pz)l′′s

4im4
0 c

2ωsl ωsl′ ωsl′′

+
∑

l,l′,l′′

~
4(py)sl δUll′ (pz)l′l′′ ([∇U1 × k]x)l′′s

4im4
0 c

2ωsl ωsl′ ωsl′′
,

(B.1)

R′

1WZ =
∑

l,l′

~
4(px)sl ([∇δU × k]z)ll′ (py)l′s

4im4
0 c

2ωsl ωsl′

+
∑

l,l′,l′′

~
4(px)sl δUll′ ([∇U1 × k]z)l′l′′ (py)l′′s

2im4
0 c

2ωsl ωsl′ ωsl′′

+
∑

l,l′,l′′

~
4 ([∇U1 × k]z)sl (px)ll′ δUl′l′′ (py)l′′s

2im4
0 c

2ωsl ωsl′ ωsl′′
,

(B.2)
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α1 =
∑

l,l′

~
4(py)sl (pz)ll′ ([∇δU × k]x)l′s

4im4
0 c

2 ωsl ωsl′

−
~
4 ([∇δU × k]x)sl (py)ll′ (pz)l′s

4im4
0 c

2 ωsl ωsl′

+
~
4 ([∇U1 × k]x)sl (py)ll′ (pz)l′l′′ δUl′′s

4im4
0 c

2 ωsl ωsl′ ωsl′′

−
~
4δUsl (py)ll′ (pz)l′l′′ ([∇U1 × k]x)l′′s

4im4
0 c

2 ωsl ωsl′ ωsl′′

+
~
4(py)sl (pz)ll′ δUl′l′′ ([∇U1 × k]x)l′′s

4im4
0 c

2 ωsl ωsl′ ωsl′′

−
~
4 ([∇U1 × k]x)sl δUll′ (py)l′l′′ (pz)l′′s

4im4
0 c

2 ωsl ωsl′ ωsl′′
,

(B.3)

α2 =
∑

l,l′

~
4(px)sl (py)ll′ ([∇δU × k]z)l′s

2im4
0 c

2 ωsl ωsl′

+
~
4 ([∇U1 × k]z)sl (px)ll′ (py)l′l′′ δUl′′s

2im4
0 c

2 ωsl ωsl′ ωsl′′

+
~
4(px)sl (py)ll′ δUl′l′′ ([∇U1 × k]z)l′′s

2im4
0 c

2 ωsl ωsl′ ωsl′′
,

(B.4)

R2WZ =
∑

l,l′

~
4(py)sl ([∇U1 × k]x)ll′ (pz)l′s

4im4
0 c

2

(

1

ω2
sl ωsl′

+
1

ωsl ω
2
sl′

)

+
~
4(py)sl (pz)ll′ ([∇U1 × k]x)l′s

4im4
0 c

2 ω2
sl ωsl′

+
~
4 ([∇U1 × k]x)sl (py)ll′ (pz)l′s

4im4
0 c

2 ωsl ω2
sl′

,

(B.5)

R′

2WZ =
∑

l,l′

~
4(px)sl ([∇U1 × k]z)ll′ (py)l′s

4im4
0 c

2

(

1

ω2
sl ωsl′

+
1

ωsl ω2
sl′

)

+
~
4(px)sl (py)ll′ ([∇U1 × k]z)l′s

4im4
0 c

2 ω2
sl ωsl′

+
~
4 ([∇U1 × k]z)sl (px)ll′ (py)l′s

4im4
0 c

2 ωsl ω2
sl′

.

(B.6)

β1 =
∑

l,l′

~
4(py)sl (pz)ll′ ([∇U1 × k]x)l′s

4im4
0 c

2 ωsl ω
2
sl′

−
~
4 ([∇U1 × k]x)sl (py)ll′ (pz)l′s

4im4
0 c

2 ω2
sl ωsl′

,

(B.7)
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β2 =
∑

l,l′

~
4(px)sl (py)ll′ ([∇U1 × k]z)l′s

4im4
0 c

2 ωsl ω2
sl′

−
~
4 ([∇U1 × k]z)sl (px)ll′ (py)l′s

4im4
0 c

2 ω2
sl ωsl′

.

(B.8)
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