65 research outputs found

    Sequence-specific Solution Structures of the Four Isosequential Pairs of Single-stranded DNAs and RNAs

    Get PDF
    The role of the sequence-context in the self-organization of four single-stranded (ss) isosequential pairs of DNAs (1 – 4) and RNAs (5 – 8), [d/r-(5'C^1^A^2^X^3^G^4^Y^5^A^6^C^7^): X^3^ = A or C, Y^5^ = A or C; sequence variations: 2^2^ = 4], has been elucidated by NMR-constrained Molecular Dynamics (MD) simulations (2 ns). Following sequence-specific observations have been made from the solution NMR and the NMR constrained MD simulation study: (i) Analysis of the NOESY footprints, mainly (H8/H6)~n~ to (H1' and H3')~n-1~ contacts, of ssDNAs (1 - 4) and ssRNAs (5 – 8) in the aqueous medium have shown that all ssDNAs (1 - 4) and ssRNAs (5 - 8) adopt right handed stacked helical structures in the NMR time scale. (ii) Intra-residual cross-peak intensities for the H(8/6)~n-~ H(1'/2'/2''/H3')~n~ contacts in ssDNAs and ssRNAs are stronger at the 3'-ends in comparison with those at the 5'-ends, suggesting that the dynamics of the nucleobases at the 3'-end are more restricted, whereas those at the 5'-end are more flexible. (iii) This relative NMR found mobility is consistent with the final RMSd calculations of the final NMR-MD structures of ssDNAs and ssRNAs. They show that the 5'-end nucleobases have higher RMSd values compared to those at the 3'-end, except for the sequence d/r(5'C^1^A^2^A^3^G^4^A^5^A^6^C^7^). (iv) Relative nOe intensities of inter-residual H(8/6)~n~ - H(1')~n-1~ and H(8/6)~n~ - H(3')~n-1~ contacts, as well as NMR observed fluctuations in the sugar conformations, for ssDNAs (1 – 4) and ssRNAs (5 – 8) show that no ssDNA or ssRNA adopts either a typical B-type DNA or A-type RNA form. (v) In the final NMR-MD structures all the [H8/6N~(n)~ -- H1'N~(n-1)~/ H3'N~(n-1)~, N = A, G, C] distances in different isosequential pairs of ssDNA (1 – 4) and ssRNA (5 – 8) change depending upon the sequence context of the single-stranded nucleic acids. Both in the deoxy and ribo series, it is the purine-rich sequences [d/r-(5'C^1^A^2^A^3^G^4^A^5^A^6^C^7^) which form the most stable self-organized right-handed helical structures because of the favorable purine-purine stacking interactions. (vi) Stacking pattern at each of the dinucleotide steps show that the base-base nearest neighbor stacking interactions depend solely upon the sequence contexts of the respective ssDNAs (1 – 4) and ssRNAs (5 – 8). See pages 47 – 145 for Supplementary Information for detailed spectroscopic data

    Serum Metabolomic Profiles in Neonatal Mice following Oral Brominated Flame Retardant Exposures to Hexabromocyclododecane (HBCD) Alpha, Gamma, and Commercial Mixture

    Get PDF
    BACKGROUND: Hexabromocyclododecane (HBCD) is a high production volume brominated flame retardant added to building insulation foams, electronics, and textiles. HBCD is a commercial mixture (CM-HBCD) composed of three main stereoisomers: α-HBCD (10%), β-HBCD (10%), and γ-HBCD (80%). A shift from the dominant stereoisomer γ-HBCD to α-HBCD is detected in humans and wildlife. OBJECTIVES: Considering CM-HBCD has been implicated in neurodevelopment and endocrine disruption, with expected metabolism perturbations, we performed metabolomics on mice serum obtained during a window-of-developmental neurotoxicity to draw correlations between early-life exposures and developmental outcomes and to predict health risks. METHODS: Six female C57BL/6 mice at postnatal day (PND) 10 were administered a single gavage dose of α-, γ-, or CM-HBCD at 3, 10, and 30 mg/kg. Nuclear magnetic resonance metabolomics was used to analyze 60 μL serum aliquots of blood collected 4 days post-oral exposure. RESULTS: Infantile mice exposed to α-, γ-, or CM-HBCD demonstrated differences in endogenous metabolites by treatment and dose groups, including metabolites involved in glycolysis, gluconeogenesis, lipid metabolism, citric acid cycle, and neurodevelopment. Ketone bodies, 3-hydroxybutyrate, and acetoacetate, were nonstatistically elevated, when compared with mean control levels, in all treatment and dose groups, while glucose, pyruvate, and alanine varied. Acetoacetate was significantly increased in the 10 mg/kg α-HBCD and was nonsignificantly decreased with CM-HBCD. A third ketone body, acetone, was significantly lower in the 30 mg/kg α-HBCD group with significant increases in pyruvate at the same treatment and dose group. Metabolites significant in differentiating treatment and dose groups were also identified, including decreases in amino acids glutamate (excitatory neurotransmitter in learning and memory) and phenylalanine (neurotransmitter precursor) after α-HBCD and γ-HBCD exposure, respectively. CONCLUSIONS: We demonstrated that 4 days following a single neonatal oral exposure to α-, γ-, and CM-HBCD resulted in different serum metabolomic profiles, indicating stereoisomer- and mixture-specific effects and possible mechanisms of action

    Metabolomics Reveals New Mechanisms for Pathogenesis in Barth Syndrome and Introduces Novel Roles for Cardiolipin in Cellular Function

    Get PDF
    Barth Syndrome is the only known Mendelian disorder of cardiolipin remodeling, with characteristic clinical features of cardiomyopathy, skeletal myopathy, and neutropenia. While the primary biochemical defects of reduced mature cardiolipin and increased monolysocardiolipin are well-described, much of the downstream biochemical dysregulation has not been uncovered, and biomarkers are limited. In order to further expand upon the knowledge of the biochemical abnormalities in Barth Syndrome, we analyzed metabolite profiles in plasma from a cohort of individuals with Barth Syndrome compared to age-matched controls via 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. A clear distinction between metabolite profiles of individuals with Barth Syndrome and controls was observed, and was defined by an array of metabolite classes including amino acids and lipids. Pathway analysis of these discriminating metabolites revealed involvement of mitochondrial and extra-mitochondrial biochemical pathways including: insulin regulation of fatty acid metabolism, lipid metabolism, biogenic amine metabolism, amino acid metabolism, endothelial nitric oxide synthase signaling, and tRNA biosynthesis. Taken together, this data indicates broad metabolic dysregulation in Barth Syndrome with wide cellular effects

    Associations between the gut microbiome and metabolome in early life

    Get PDF
    Background: The infant intestinal microbiome plays an important role in metabolism and immune development with impacts on lifelong health. The linkage between the taxonomic composition of the microbiome and its metabolic phenotype is undefined and complicated by redundancies in the taxon-function relationship within microbial communities. To inform a more mechanistic understanding of the relationship between the microbiome and health, we performed an integrative statistical and machine learning-based analysis of microbe taxonomic structure and metabolic function in order to characterize the taxa-function relationship in early life. Results: Stool samples collected from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) at approximately 6-weeks (n = 158) and 12-months (n = 282) of age were profiled using targeted and untargeted nuclear magnetic resonance (NMR) spectroscopy as well as DNA sequencing of the V4-V5 hypervariable region from the bacterial 16S rRNA gene. There was significant inter-omic concordance based on Procrustes analysis (6 weeks: p = 0.056; 12 months: p = 0.001), however this association was no longer significant when accounting for phylogenetic relationships using generalized UniFrac distance metric (6 weeks: p = 0.376; 12 months: p = 0.069). Sparse canonical correlation analysis showed significant correlation, as well as identifying sets of microbe/metabolites driving microbiome-metabolome relatedness. Performance of machine learning models varied across different metabolites, with support vector machines (radial basis function kernel) being the consistently top ranked model. However, predictive R2 values demonstrated poor predictive performance across all models assessed (avg: − 5.06% -- 6 weeks; − 3.7% -- 12 months). Conversely, the Spearman correlation metric was higher (avg: 0.344–6 weeks; 0.265–12 months). This demonstrated that taxonomic relative abundance was not predictive of metabolite concentrations. Conclusions: Our results suggest a degree of overall association between taxonomic profiles and metabolite concentrations. However, lack of predictive capacity for stool metabolic signatures reflects, in part, the possible role of functional redundancy in defining the taxa-function relationship in early life as well as the bidirectional nature of the microbiome-metabolome association. Our results provide evidence in favor of a multi-omic approach for microbiome studies, especially those focused on health outcomes

    Neonatal Metabolomic Profiles Related to Prenatal Arsenic Exposure

    Get PDF
    Prenatal inorganic arsenic (iAs) exposure is associated with health effects evident at birth and later in life. An understanding of the relationship between prenatal iAs exposure and alterations in the neonatal metabolome could reveal critical molecular modifications, potentially underpinning disease etiologies. In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis was used to identify metabolites in neonate cord serum associated with prenatal iAs exposure in participants from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort, in GoÌmez Palacio, Mexico. Through multivariable linear regression, ten cord serum metabolites were identified as significantly associated with total urinary iAs and/or iAs metabolites, measured as %iAs, %monomethylated arsenicals (MMAs), and %dimethylated arsenicals (DMAs). A total of 17 metabolites were identified as significantly associated with total iAs and/or iAs metabolites in cord serum. These metabolites are indicative of changes in important biochemical pathways such as vitamin metabolism, the citric acid (TCA) cycle, and amino acid metabolism. These data highlight that maternal biotransformation of iAs and neonatal levels of iAs and its metabolites are associated with differences in neonate cord metabolomic profiles. The results demonstrate the potential utility of metabolites as biomarkers/indicators of in utero environmental exposure

    NMR and Metabolomics—A Roadmap for the Future

    Get PDF
    Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatographymass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021—the most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements

    Baseline Serum Biomarkers Predict Response to a Weight Loss Intervention in Older Adults with Obesity: A Pilot Study

    Get PDF
    Caloric restriction and aerobic and resistance exercise are safe and effective lifestyle interventions for achieving weight loss in the obese older population (>65 years) and may improve physical function and quality of life. However, individual responses are heterogeneous. Our goal was to explore the use of untargeted metabolomics to identify metabolic phenotypes associated with achieving weight loss after a multi-component weight loss intervention. Forty-two older adults with obesity (body mass index, BMI, ≥30 kg/m2) participated in a six-month telehealth-based weight loss intervention. Each received weekly dietitian visits and twice-weekly physical therapist-led group strength training classes with a prescription for aerobic exercise. We categorized responders’ weight loss using a 5% loss of initial body weight as a cutoff. Baseline serum samples were analyzed to determine the variable importance to the projection (VIP) of signals that differentiated the responder status of metabolic profiles. Pathway enrichment analysis was conducted in Metaboanalyst. Baseline data did not differ significantly. Weight loss was 7.2 ± 2.5 kg for the 22 responders, and 2.0 ± 2.0 kg for the 20 non-responders. Mummichog pathway enrichment analysis revealed that perturbations were most significant for caffeine and caffeine-related metabolism (p = 0.00028). Caffeine and related metabolites, which were all increased in responders, included 1,3,7-trimethylxanthine (VIP = 2.0, p = 0.033, fold change (FC) = 1.9), theophylline (VIP = 2.0, p = 0.024, FC = 1.8), paraxanthine (VIP = 2.0, p = 0.028, FC = 1.8), 1-methylxanthine (VIP = 1.9, p = 0.023, FC = 2.2), 5-acetylamino-6-amino-3-methyluracil (VIP = 2.2, p = 0.025, FC = 2.2), 1,3-dimethyl uric acid (VIP = 2.1, p = 0.023, FC = 2.3), and 1,7-dimethyl uric acid (VIP = 2.0, p = 0.035, FC = 2.2). Increased levels of phytochemicals and microbiome-related metabolites were also found in responders compared to non-responders. In this pilot weight loss intervention, older adults with obesity and evidence of significant enrichment for caffeine metabolism were more likely to achieve ≥5% weight loss. Further studies are needed to examine these associations in prospective cohorts and larger randomized trials

    A Metabolomics Approach to Investigate Kukoamine B—A Potent Natural Product With Anti-diabetic Properties

    Get PDF
    Due to the surge in type 2 diabetes mellitus (T2DM), treatments for chronic metabolic dysregulations with fewer side-effects are sought. Lycii Cortex (LyC), a traditional Chinese Medicine (TCM) herb has a long history of being widely prescribed to treat T2DM as alternative medicine; however, the bioactive molecules and working mechanism remained unknown. Previous studies revealed kukoamine B (KB) as a major and featured compound for LyC with bioactivities for anti-oxidation and acute inflammation, which may be related to anti-diabetes properties. This study aims to understand the efficacy and the mode of action of KB in the diabetic (db/db) mouse model using a metabolomics approach. Parallel comparison was conducted using the first-line anti-diabetic drugs, metformin and rosligtazone, as positive controls. The db/db mice were treated with KB (50 mg kg−1 day−1) for 9 weeks. Bodyweight and fasting blood glucose were monitored every 5 and 7 days, respectively. Metabolomics and high-throughput molecular approaches, including lipidomics, targeted metabolomics (Biocrates p180), and cytokine profiling were applied to measure the alteration of serum metabolites and inflammatory biomarkers between different treatments vs. control (db/db mice treated with vehicle). After 9 weeks of treatment, KB lowered blood glucose, without the adverse effects of bodyweight gain and hepatomegaly shown after rosiglitazone treatment. Lipidomics analysis revealed that KB reduced levels of circulating triglycerides, cholesterol, phosphatidylethanolamine, and increased levels of phosphatidylcholines. KB also increased acylcarnitines, and reduced systemic inflammation (cytokine array). Pathway analysis suggested that KB may regulate nuclear transcription factors (e.g., NF-κB and/or PPAR) to reduce inflammation and facilitate a shift toward metabolic and inflammatory homeostasis. Comparison of KB with first-line drugs suggests that rosiglitazone may over-regulate lipid metabolism and anti-inflammatory responses, which may be associated with adverse side effects, while metformin had less impact on lipid and anti-inflammation profiles. Our research from holistic and systemic views supports the conclusion that KB is the bioactive compound of LyC for managing T2DM, and suggests KB as a nutraceutical or a pharmaceutical candidate for T2D treatment. In addition, our research provides insights related to metformin and rosiglitazone action, beyond lowering blood glucose

    NMR and Metabolomics—A Roadmap for the Future

    Get PDF
    Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021—the most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements
    corecore