298 research outputs found
Chaste: an open source C++ library for computational physiology and biology
Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to "re-invent the wheel" with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials
The role of rapid diagnostics in managing Ebola epidemics
Ebola emerged in West Africa around December 2013 and swept through Guinea, Sierra Leone and Liberia, giving rise to 27,748 confirmed, probable and suspected cases reported by 29 July 2015. Case diagnoses during the epidemic have relied on polymerase chain reaction-based tests. Owing to limited laboratory capacity and local transport infrastructure, the delays from sample collection to test results being available have often been 2 days or more. Point-of-care rapid diagnostic tests offer the potential to substantially reduce these delays. We review Ebola rapid diagnostic tests approved by the World Health Organization and those currently in development. Such rapid diagnostic tests could allow early triaging of patients, thereby reducing the potential for nosocomial transmission. In addition, despite the lower test accuracy, rapid diagnostic test-based diagnosis may be beneficial in some contexts because of the reduced time spent by uninfected individuals in health-care settings where they may be at increased risk of infection; this also frees up hospital beds. We use mathematical modelling to explore the potential benefits of diagnostic testing strategies involving rapid diagnostic tests alone and in combination with polymerase chain reaction testing. Our analysis indicates that the use of rapid diagnostic tests with sensitivity and specificity comparable with those currently under development always enhances control, whether evaluated at a health-care-unit or population level. If such tests had been available throughout the recent epidemic, we estimate, for Sierra Leone, that their use in combination with confirmatory polymerase chain-reaction testing might have reduced the scale of the epidemic by over a third
Addressing disparities in maternal health care in Pakistan: gender, class and exclusion
Background: After more than two decades of the Safe Motherhood Initiative and Millennium Development Goals aimed at reducing maternal mortality, women continue to die in childbirth at unacceptably high rates in Pakistan. While an extensive literature describes various programmatic strategies, it neglects the rigorous analysis of the reasons these strategies have been unsuccessful, especially for women living at the economic and social margins of society. A critical gap in current knowledge is a detailed understanding of the root causes of disparities in maternal health care, and in particular, how gender and class influence policy formulation and the design and delivery of maternal health care services. Taking Pakistan as a case study, this research builds upon two distinct yet interlinked conceptual approaches to understanding the phenomenon of inequity in access to maternal health care: social exclusion and health systems as social institutions.
Methods/Design: This four year project consists of two interrelated modules that focus on two distinct groups of participants: (1) poor, disadvantaged women and men and (2) policy makers, program managers and health service providers. Module one will employ critical ethnography to understand the key axes of social exclusion as related to gender, class and zaat and how they affect women’s experiences of using maternal health care. Through health care setting observations, interviews and document review, Module two will assess policy design and delivery of maternal health services.
Discussion: This research will provide theoretical advances to enhance understanding of the power dynamics of gender and class that may underlie poor women’s marginalization from health care systems in Pakistan. It will also provide empirical evidence to support formulation of maternal health care policies and health care system practices aimed at reducing disparities in maternal health care in Pakistan. Lastly, it will enhance inter-disciplinary research capacity in the emerging field of social exclusion and maternal health and help reduce social inequities and achieve the Millennium Development Goal No. 5
Combined changes in Wnt signalling response and contact inhibition induce altered proliferation in radiation treated intestinal crypts
Curative intervention is possible if colorectal cancer is identified early, underscoring the need to detect the earliest stages of malignant transformation. A candidate biomarker is the expanded proliferative zone observed in crypts before adenoma formation, also found in irradiated crypts. However, the underlying driving mechanism for this is not known. Wnt signaling is a key regulator of proliferation, and elevated Wnt signaling is implicated in cancer. Nonetheless, how cells differentiate Wnt signals of varying strengths is not understood. We use computational modeling to compare alternative hypotheses about how Wnt signaling and contact inhibition affect proliferation. Direct comparison of simulations with published experimental data revealed that the model that best reproduces proliferation patterns in normal crypts stipulates that proliferative fate and cell cycle duration are set by the Wnt stimulus experienced at birth. The model also showed that the broadened proliferation zone induced by tumorigenic radiation can be attributed to cells responding to lower Wnt concentrations and dividing at smaller volumes. Application of the model to data from irradiated crypts after an extended recovery period permitted deductions about the extent of the initial insult. Application of computational modeling to experimental data revealed how mechanisms that control cell dynamics are altered at the earliest stages of carcinogenesis
A numerical guide to the solution of the bidomain equations of cardiac electrophysiology
Simulation of cardiac electrical activity using the bidomain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bidomain modelling. Each component of bidomain simulationsddiscretisation, ODE-solution, linear system solution, and parallelisationdis discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme
Nature of conduction in doped silicon
Via ultrafast optoelectronic THz techniques, we are able to test alternative theories of conduction by precisely measuring the complex conductivity of doped silicon from low frequencies to frequencies higher than the plasma frequency and the carrier damping rate. These results, obtained for both n and p-type samples, spanning a range of more than 2 orders of magnitude in the carrier density, do not fit any standard theory. We only find agreement over the full frequency range with the complex conductivity given by a Cole-Davidson type distribution applied here for the first time to a crystalline semiconductor, and thereby demonstrate that fractal conductivity is not just found in disordered material.Peer reviewedElectrical and Computer Engineerin
История создания кедровой промышленности
Впервые исследованы материалы Всесоюзного треста кедровой промышленности «Союзкедр» за 1931-1933 гг. Они позволили проанализировать основные направления политики государства по созданию самостоятельной кедровой промышленности в СССР, а также выяснить, что правительство при принятии решения о её создании исходило из потребностей страны, не учитывая реальные возможности созданного треста в условиях корректировки финансовой политики и проведения сплошной коллективизации
Chaste : Cancer, Heart and Soft Tissue Environment
Funding: UK Engineering and Physical Sciences Research Council [grant number EP/N509711/1 (J.K.)].Chaste (Cancer, Heart And Soft Tissue Environment) is an open source simulation package for the numerical solution of mathematical models arising in physiology and biology. To date, Chaste development has been driven primarily by applications that include continuum modelling of cardiac electrophysiology (‘Cardiac Chaste’), discrete cell-based modelling of soft tissues (‘Cell-based Chaste’), and modelling of ventilation in lungs (‘Lung Chaste’). Cardiac Chaste addresses the need for a high-performance, generic, and verified simulation framewor kfor cardiac electrophysiology that is freely available to the scientific community. Cardiac chaste provides a software package capable of realistic heart simulations that is efficient, rigorously tested, and runs on HPC platforms. Cell-based Chaste addresses the need for efficient and verified implementations of cell-based modelling frameworks, providing a set of extensible tools for simulating biological tissues. Computational modelling, along with live imaging techniques, plays an important role in understanding the processes of tissue growth and repair. A wide range of cell-based modelling frameworks have been developed that have each been successfully applied in a range of biological applications. Cell-based Chaste includes implementations of the cellular automaton model, the cellular Potts model, cell-centre models with cell representations as overlapping spheres or Voronoi tessellations, and the vertex model. Lung Chaste addresses the need for a novel, generic and efficient lung modelling software package that is both tested and verified. It aims to couple biophysically-detailed models of airway mechanics with organ-scale ventilation models in a package that is freely available to the scientific community.Publisher PDFPeer reviewe
- …
