253 research outputs found
Charge ordering induces a smectic phase in oblate ionic liquid crystals
We report a computer simulation study of an electroneutral mixture of
oppositely charged oblate ellipsoids of revolution with aspect ratio A = 1/3.
In contrast to hard or soft repulsive ellipsoids, which are purely nematic,
this system exhibits a smectic-A phase in which charges of equal sign are
counterintuitively packed in layers perpendicular to the nematic director
Orientational Ordering in Spatially Disordered Dipolar Systems
This letter addresses basic questions concerning ferroelectric order in
positionally disordered dipolar materials. Three models distinguished by dipole
vectors which have one, two or three components are studied by computer
simulation. Randomly frozen and dynamically disordered media are considered. It
is shown that ferroelectric order is possible in spatially random systems, but
that its existence is very sensitive to the dipole vector dimensionality and
the motion of the medium. A physical analysis of our results provides
significant insight into the nature of ferroelectric transitions.Comment: 4 pages twocolumn LATEX style. 4 POSTSCRIPT figures available from
[email protected]
Ferroelectric and Dipolar Glass Phases of Non-Crystalline Systems
In a recent letter [Phys. Rev. Lett. {\bf 75}, 2360 (1996)] we briefly
discussed the existence and nature of ferroelectric order in positionally
disordered dipolar materials. Here we report further results and give a
complete description of our work. Simulations of randomly frozen and
dynamically disordered dipolar soft spheres are used to study ferroelectric
ordering in non-crystalline systems. We also give a physical interpretation of
the simulation results in terms of short- and long-range interactions. Cases
where the dipole moment has 1, 2, and 3 components (Ising, XY and XYZ models,
respectively) are considered. It is found that the Ising model displays
ferroelectric phases in frozen amorphous systems, while the XY and XYZ models
form dipolar glass phases at low temperatures. In the dynamically disordered
model the equations of motion are decoupled such that particle translation is
completely independent of the dipolar forces. These systems spontaneously
develop long-range ferroelectric order at nonzero temperature despite the
absence of any fined-tuned short-range spatial correlations favoring dipolar
order. Furthermore, since this is a nonequilibrium model we find that the
paraelectric to ferroelectric transition depends on the particle mass. For the
XY and XYZ models, the critical temperatures extrapolate to zero as the mass of
the particle becomes infinite, whereas, for the Ising model the critical
temperature is almost independent of mass and coincides with the ferroelectric
transition found for the randomly frozen system at the same density. Thus in
the infinite mass limit the results of the frozen amorphous systems are
recovered.Comment: 25 pages (LATEX, no macros). 11 POSTSCRIPT figures enclosed.
Submitted to Phisical Review E. Contact: [email protected]
Recommended from our members
Modeling the global emission, transport and deposition of trace elements associated with mineral dust
Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive the desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets
Modeling the global emission, transport and deposition of trace elements associated with mineral dust
Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive the desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets
- …