411 research outputs found

    Effects of word predictability on eye movements during Arabic reading

    Get PDF
    Contextual predictability influences both the probability and duration of eye fixations on words when reading Latinate alphabetic scripts like English and German. However, it is unknown whether word predictability influences eye movements in reading similarly for Semitic languages like Arabic, which are alphabetic languages with very different visual and linguistic characteristics. Such knowledge is nevertheless important for establishing the generality of mechanisms of eye-movement control across different alphabetic writing systems. Accordingly, we investigated word predictability effects in Arabic in two eye-movement experiments. Both produced shorter fixation times for words with high compared to low predictability, consistent with previous findings. Predictability did not influence skipping probabilities for (four- to eight-letter) words of varying length and morphological complexity (Experiment 1). However, it did for short (three- to four-letter) words with simpler structures (Experiment 2). We suggest that word-skipping is reduced, and affected less by contextual predictability, in Arabic compared to Latinate alphabetic reading, because of specific orthographic and morphological characteristics of the Arabic script

    Frontolimbic neural circuitry at 6 months predicts individual differences in joint attention at 9 months

    Get PDF
    Elucidating the neural basis of joint attention in infancy promises to yield important insights into the development of language and social cognition, and directly informs developmental models of autism. We describe a new method for evaluating responding to joint attention performance in infancy that highlights the 9- to 10-month period as a time interval of maximal individual differences. We then demonstrate that fractional anisotropy in the right uncinate fasciculus, a white matter fiber bundle connecting the amygdala to the ventral-medial prefrontal cortex and anterior temporal pole, measured in 6-month-olds predicts individual differences in responding to joint attention at 9 months of age. The white matter microstructure of the right uncinate was not related to receptive language ability at 9 months. These findings suggest that the development of core nonverbal social communication skills in infancy is largely supported by preceding developments within right lateralized frontotemporal brain systems

    Understanding the Relationship between Intention and Cat Containment Behaviour: A Case Study of Kitten and Cat Adopters from RSPCA Queensland

    Get PDF
    In Australia, cat owners are encouraged to keep their pet cats contained on their property at all times. This study explores the relationship between the intentions and behaviours of 72 kitten and cat adopters from a RSPCA Queensland animal shelter, to provide a more in-depth understanding of the factors influencing the adoption of cat containment behaviours. At the time of adoption, 64 participants (89%) indicated they were intending to keep their cat fully contained. Eight weeks after adoption, 63 participants (87%) reported they were doing so (59 who had stated their intention at the time of adoption, and 4 who had not). We found cat owner containment behaviour was moderately correlated with containment intentions. For some of the participants when it came to enacting this behaviour, their intentions and the provided education information was not enough to overcome the more compelling capability, opportunity and motivational factors which presented themselves once they got home. We were able to identify these factors and suggest additional behaviour change strategies that would assist. Although it is important to provide cat adopters with advice about how to contain their cats properly, these results also highlight the importance of focusing attention on other behaviour change strategies that address the particular barriers faced by some cat-owners who are unsuccessful in keeping their cat contained on their property

    Polymer-Supported Photosensitizers for Oxidative Organic Transformations in Flow and under Visible Light Irradiation

    Get PDF
    A 2,1,3-benzothiadiazole (BTZ)–based vinyl crosslinker was synthesized and copolymerized with large excesses of styrene using free radical polymerization to deliver heterogeneous triplet photosensitizers in three distinct physical formats: gels, beads and monoliths. These photosensitizers were employed for the production of singlet oxygen (1O2) and for the aerobic hydroxylation of aryl boronic acids via superoxide radical anion (O2˙-) whereby the materials demonstrated good chemical and photo stability. BTZ-containing beads and monoliths were exploited as photosensitizers in a commercial flow reactor, and 1O2 production was also demonstrated using direct sunlight irradiation, with a conversion rate comparable to the rates achieved when using a 420 nm LED module as the source of photons

    Frontolimbic neural circuitry at 6 months predicts individual differences in joint attention at 9 months

    Get PDF
    Elucidating the neural basis of joint attention in infancy promises to yield important insights into the development of language and social cognition, and directly informs developmental models of autism. We describe a new method for evaluating responding to joint attention performance in infancy that highlights the 9 to 10 month period as a time interval of maximal individual differences. We then demonstrate that fractional anisotropy in the right uncinate fasciculus, a white matter fiber bundle connecting the amygdala to the ventral-medial prefrontal cortex and anterior temporal pole, measured in 6 month-olds predicts individual differences in responding to joint attention at 9 months of age. The white matter microstructure of the right uncinate was not related to receptive language ability at 9 months. These findings suggest that the development of core nonverbal social communication skills in infancy is largely supported by preceding developments within right lateralized frontotemporal brain systems

    An analysis of identical single-nucleotide polymorphisms genotyped by two different platforms

    Get PDF
    The overlap of 94 single-nucleotide polymorphisms (SNP) among the 4,720 and 11,120 SNPs contained in the linkage panels of Illumina and Affymetrix, respectively, allows an assessment of the discrepancy rate produced by these two platforms. Although the no-call rate for the Affymetrix platform is approximately 8.6 times greater than for the Illumina platform, when both platforms make a genotypic call, the agreement is an impressive 99.85%. To determine if disputed genotypes can be resolved without sequencing, we studied recombination in the region of the discrepancy for the most discrepant SNP rs958883 (typed by Illumina) and tsc02060848 (typed by Affymetrix). We find that the number of inferred recombinants is substantially higher for the Affymetrix genotypes compared to the Illumina genotypes. We illustrate this with pedigree 10043, in which 3 of 7 versus 0 of 7 offspring must be double recombinants using the genotypes from the Affymetrix and the Illumina platforms, respectively. Of the 36 SNPs with one or more discrepancies, we identified a subset that appears to cluster in families. Some of this clustering may be due to the presence of a second segregating SNP that obliterates a XbaI site (the restriction enzyme used in the Affymetrix platform), resulting in a fragment too long (>1,000 bp) to be amplified

    Effect of oxandrolone and timing of pubertal induction on final height in Turner’s syndrome: randomised, double blind, placebo controlled trial

    Get PDF
    Objective To examine the effect of oxandrolone and the timing of pubertal induction on final height in girls with Turner’s syndrome receiving a standard dose of growth hormone

    Effects of Normative Aging on Eye Movements during Reading

    Get PDF
    Substantial progress has been made in understanding the mostly detrimental effects of normative aging on eye movements during reading. This article provides a review of research on aging effects on eye movements during reading for different writing systems (i.e., alphabetic systems like English compared to non-alphabetic systems like Chinese), focused on appraising the importance of visual and cognitive factors, considering key methodological issues, and identifying vital questions that need to be addressed and topics for further investigation

    Emerging executive functioning and motor development in infants at high and low risk for autism spectrum disorder

    Get PDF
    Existing evidence suggests executive functioning (EF) deficits may be present in children with autism spectrum disorder (ASD) by 3 years of age. It is less clear when, prior to 3 years, EF deficits may emerge and how EF unfold over time. The contribution of motor skill difficulties to poorer EF in children with ASD has not been systematically studied. We investigated the developmental trajectory of EF in infants at high and low familial risk for ASD (HR and LR) and the potential associations between motor skills, diagnostic group, and EF performance. Participants included 186 HR and 76 LR infants. EF (A-not-B), motor skills (Fine and Gross Motor), and cognitive ability were directly assessed at 12 months and 24 months of age. Participants were directly evaluated for ASD at 24 months using DSM-IV-TR criteria and categorized as HR-ASD, HR-Negative, and LR-Negative. HR-ASD and HR-Negative siblings demonstrated less improvement in EF over time compared to the LR-Negative group. Motor skills were associated with group and EF performance at 12 months. No group differences were found at 12 months, but at 24 months, the HR-ASD and HR-Negative groups performed worse than the LR-Negative group overall after controlling for visual reception and maternal education. On reversal trials, the HR-ASD group performed worse than the LR-Negative group. Motor skills were associated with group and EF performance on reversal trials at 24 months. Findings suggest that HR siblings demonstrate altered EF development and that motor skills may play an important role in this process

    Current- and wave- generated bedforms on mixed sand-clay intertidal flats : a new bedform phase diagram and implications for bed roughness and preservation potential

    Get PDF
    Funding: This work was supported by the United Kingdom’s Natural Environment Research Council (NERC) under Grant NE/I027223/1 (COHBED). JM, Julie Hope, and Daniel Parsons were partially funded by a Horizon 2020 European Research Council Consolidator Award (GEOSTICK, Grant 725955). The GEOSTICK project also kindly contributed the article processing fees. Andrew Manning’s contribution toward this research was partly supported by the National Science Foundation grants OCE-1924532 and OCE-1736668, TKI-MUSA project 11204950-000-ZKS-0002, and the HR Wallingford company research project FineScale (Grant Nos. ACK3013_62). DP received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (Grant reference HR09011) and contributing institutions.The effect of bedforms on frictional roughness felt by the overlying flow is crucial to the regional modelling of estuaries and coastal seas. Bedforms are also a key marker of palaeoenvironments. Experiments have shown that even modest biotic and abiotic cohesion in sand inhibits bedform formation, modifies bedform size, and slows bedform development, but this has rarely been tested in nature. The present study used a comprehensive dataset recorded over a complete spring–neap cycle on an intertidal flat to investigate bedform dynamics controlled by a wide range of wave and current conditions, including the effects of wave–current angle and bed cohesion. A detailed picture of different bedform types and their relationship to the flow, be they equilibrium, non-equilibrium, or relict, was produced, and captured in a phase diagram that integrates wave-dominated, current-dominated, and combined wave–current bedforms. This bedform phase diagram incorporates a substantially wider range of flow conditions than previous phase diagrams, including bedforms related to near-orthogonal wave–current angles, such as ladderback ripples. Comparison with laboratory-derived bedform phase diagrams indicates that washed-out ripples, lunate interference ripples and upper-stage plane beds replace the subaqueous dune field; such bedform distributions may be a key characteristic of intertidal flats. The field data also provide a means of predicting the dimensions of these bedforms, which can be transferred to other areas and grain sizes. We show that an equation for the prediction of equilibrium bedform size is sufficient to predict the roughness, even though the bedforms are highly variable in character and only in equilibrium with the flow for approximately half the time. Whilst the effect of cohesive clay is limited under more active spring conditions, clay does play a role in reducing the bedform dimensions under more quiescent neap conditions. We also investigated which combinations of waves, currents, and bed clay contents in the intertidal zone have the highest potential for bedform preservation in the geological record. This shows that combined wave–current bedforms have the lowest preservation potential and equilibrium current ripples have the highest preservation potential, even in the presence of moderate and storm waves. Hence, the absence of wave ripples and combined-flow bedforms and their primary stratification in sedimentary successions cannot be taken as evidence that waves were absent at the time of deposition.Publisher PDFPeer reviewe
    • …
    corecore