379 research outputs found

    Physical and chemical signatures of a developing anticyclonic eddy in the Leeuwin Current, eastern Indian Ocean

    Get PDF
    A multidisciplinary cruise aboard the R/V Southern Surveyor was conducted in May 2006 to sample a developing anticyclonic eddy of the Leeuwin Current off Western Australia. The eddy formed from a meander of the Leeuwin Current in mid-April 2006 and remained attached to the current until mid-August. In this study, a combination of satellite data (altimeter, sea surface temperature, and chlorophyll a) and shipboard measurements (acoustic Doppler current profiler and conductivity-temperature-depth) were used to characterize the physical and chemical signatures of the eddy. The temperature-salinity properties of the mixed layer waters within the anticyclonic eddy and on the shelf were both connected to that of the Leeuwin Current, indicating the water mass in the eddy is mainly derived from the Leeuwin Current and the modified Leeuwin Current water on the shelf. Above the salinity maximum near the eddy center, there was a regionally significant concentration of nitrate (>0.9 μmol L-1), and the maximum (2 μmol L-1) was at 150 in depth, below the photic zone. Nitrification within the eddy and/or local upwelling due to the forming eddy could be responsible for this high concentration of nitrate near the eddy center which potentially makes the eddy a relatively productive feature in the Leeuwin Current

    Sleep onset problems and subcortical development in infants later diagnosed with autism spectrum disorder

    Get PDF
    Objective: Sleep patterns in children with autism spectrum disorder (ASD) appear to diverge from typical development in the second or third year of life. Little is known, however, about the occurrence of sleep problems in infants who later develop ASD and possible effects on early brain development. In a longitudinal neuroimaging study of infants at familial high or low risk for ASD, parent-reported sleep onset problems were examined in relation to subcortical brain volumes in the first 2 years of life. Methods: A total of 432 infants were included across three study groups: infants at high risk who developed ASD (N=71), infants at high risk who did not develop ASD (N=234), and infants at low risk (N=127). Sleep onset problem scores (derived from an infant temperament measure) were evaluated in relation to longitudinal high-resolution T1 and T2 structural imaging data acquired at 6, 12, and 24 months of age. Results: Sleep onset problems were more common at 6–12 months among infants who later developed ASD. Infant sleep onset problems were related to hippocampal volume trajectories from 6 to 24 months only for infants at high risk who developed ASD. Brain-sleep relationships were specific to the hippocampus; no significant relationships were found with volume trajectories of other subcortical structures examined (the amygdala, caudate, globus pallidus, putamen, and thalamus). Conclusions: These findings provide initial evidence that sleep onset problems in the first year of life precede ASD diagnosis and are associated with altered neurodevelopmental trajectories in infants at high familial risk who go on to develop ASD. If replicated, these findings could provide new insights into a potential role of sleep difficulties in the development of ASD

    Subcortical Brain and Behavior Phenotypes Differentiate Infants With Autism Versus Language Delay

    Get PDF
    Background Younger siblings of children with autism spectrum disorder (ASD) are themselves at increased risk for ASD and other developmental concerns. It is unclear if infants who display developmental concerns, but are unaffected by ASD, share similar or dissimilar behavioral and brain phenotypes to infants with ASD. Most individuals with ASD exhibit heterogeneous difficulties with language, and their receptive-expressive language profiles are often atypical. Yet, little is known about the neurobiology that contributes to these language difficulties. Methods In this study, we used behavioral assessments and structural magnetic resonance imaging to investigate early brain structures and associations with later language skills. High-risk infants who were later diagnosed with ASD (n = 86) were compared with high-risk infants who showed signs of early language delay (n = 41) as well as with high- and low-risk infants who did not have ASD or language delay (n = 255 and 143, respectively). Results Results indicated that diminished language skills were evident at 12 months in infants with ASD and infants with early language delay. At 24 months of age, only the infants with ASD displayed atypical receptive-expressive language profiles. Associations between 12-month subcortical volumes and 24-month language skills were moderated by group status, indicating disordinal brain-behavior associations among infants with ASD and infants with language delay. Conclusions These results suggest that there are different brain mechanisms influencing language development in infants with ASD and infants with language delay, and that the two groups likely experience unique sets of genetic and environmental risk factors

    A broadscale analysis of host-symbiont cophylogeny reveals the drivers of phylogenetic congruence

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: A copy of the source data and R code used in this study have been deposited at figshare.com: https://doi.org/10.6084/m9.figshare.14393309 This article has earned Open Data and Open Materials badges. Data and materials are available at: https://figshare.com/articles/dataset/Dataset_for_ELE_EV_ELE13757/14393309?file=27503576 and https://figshare.com/articles/dataset/Dataset_for_ELE_EV_ELE13757/14393309?file=27503579Symbioses exert substantial biological influence, with great evolutionary and ecological relevance for disease, major evolutionary transitions, and the structure and function of ecological communities. Yet, much remains unknown about the patterns and processes that characterise symbioses. A major unanswered question is the extent to which symbiont phylogenies mirror those of their hosts and if patterns differ for parasites and mutualists. Addressing this question offers fundamental insights into evolutionary processes, such as whether symbionts typically codiverge with their hosts or if diversity is generated via host switches. Here, we perform a meta-analysis of host-symbiont phylogenetic congruence, encompassing 212 host-symbiont cophylogenetic studies that include ~10,000 species. Our analysis supersedes previous qualitative assessments by utilising a quantitative framework. We show that symbiont phylogeny broadly reflects host phylogeny across biodiversity and life-history, demonstrating a general pattern of phylogenetic congruence in host-symbiont interactions. We reveal two key aspects of symbiont life-history that promote closer ties between hosts and symbionts: vertical transmission and mutualism. Mode of symbiosis and mode of transmission are intimately interlinked, but vertical transmission is the dominant factor. Given the pervasiveness of symbioses, these findings provide important insights into the processes responsible for generating and maintaining the Earth's rich biodiversity.Kungliga Fysiografiska Sällskapet i LundAustralian Research Council (ARC

    Restricted and Repetitive Behavior and Brain Functional Connectivity in Infants at Risk for Developing Autism Spectrum Disorder

    Get PDF
    Background: Restricted and repetitive behaviors (RRBs), detectable by 12 months in many infants in whom autism spectrum disorder (ASD) is later diagnosed, may represent some of the earliest behavioral markers of ASD. However, brain function underlying the emergence of these key behaviors remains unknown. Methods: Behavioral and resting-state functional connectivity (fc) magnetic resonance imaging data were collected from 167 children at high and low familial risk for ASD at 12 and 24 months (n = 38 at both time points). Twenty infants met criteria for ASD at 24 months. We divided RRBs into four subcategories (restricted, stereotyped, ritualistic/sameness, self-injurious) and used a data-driven approach to identify functional brain networks associated with the development of each RRB subcategory. Results: Higher scores for ritualistic/sameness behavior were associated with less positive fc between visual and control networks at 12 and 24 months. Ritualistic/sameness and stereotyped behaviors were associated with less positive fc between visual and default mode networks at 12 months. At 24 months, stereotyped and restricted behaviors were associated with more positive fc between default mode and control networks. Additionally, at 24 months, stereotyped behavior was associated with more positive fc between dorsal attention and subcortical networks, whereas restricted behavior was associated with more positive fc between default mode and dorsal attention networks. No significant network-level associations were observed for self-injurious behavior. Conclusions: These observations mark the earliest known description of functional brain systems underlying RRBs, reinforce the construct validity of RRB subcategories in infants, and implicate specific neural substrates for future interventions targeting RRBs

    OqxAB, a quinolone and olaquindox efflux pump, is widely distributed among multidrug-resistant Klebsiella pneumoniae isolates of human origin

    Get PDF
    Use of antibiotics among livestock contributes to the selection and dissemination of multidrug resistant (MDR) bacteria. Olaquindox and carbadox are quinoxaline derivatives with antibacterial properties that prevent dysentery and enhance weight gain in suckling pigs. Resistance to quinoxalines is mediated by the efflux pump OqxAB, which also extrudes antibiotics such as chloramphenicol and fluoroquinolones. The gene encoding this efflux pump, oqxAB, was initially detected within plasmid pOLA52, which was found in Escherichia coli isolated from swine manure. Dissemination of oqxAB has been noted in Salmonella species, and the original genetic reservoir of oqxAB was traced to the chromosome of Klebsiella pneumoniae. Surprisingly, OqxAB has been reported only in clinical isolates of K. pneumoniae from China, South Korea, and Spain

    Walking, Gross Motor Development, and Brain Functional Connectivity in Infants and Toddlers

    Get PDF
    Infant gross motor development is vital to adaptive function and predictive of both cognitive outcomes and neurodevelopmental disorders. However, little is known about neural systems underlying the emergence of walking and general gross motor abilities. Using resting state fcMRI, we identified functional brain networks associated with walking and gross motor scores in a mixed cross-sectional and longitudinal cohort of infants at high and low risk for autism spectrum disorder, who represent a dimensionally distributed range of motor function. At age 12 months, functional connectivity of motor and default mode networks was correlated with walking, whereas dorsal attention and posterior cingulo-opercular networks were implicated at age 24 months. Analyses of general gross motor function also revealed involvement of motor and default mode networks at 12 and 24 months, with dorsal attention, cingulo-opercular, frontoparietal, and subcortical networks additionally implicated at 24 months. These findings suggest that changes in network-level brain-behavior relationships underlie the emergence and consolidation of walking and gross motor abilities in the toddler period. This initial description of network substrates of early gross motor development may inform hypotheses regarding neural systems contributing to typical and atypical motor outcomes, as well as neurodevelopmental disorders associated with motor dysfunction

    Transcriptome and secretome analysis of intra-mammalian life-stages of the emerging helminth pathogen, Calicophoron daubneyi reveals adaptation to a unique host environment.

    Get PDF
    Publication history: Accepted - 20 October 2020; Published online - 20 October 2020.Paramphistomosis, caused by the rumen fluke, Calicophoron daubneyi, is a parasitic infection of ruminant livestock which has seen a rapid rise in prevalence throughout Western Europe in recent years. Following ingestion of metacercariae (parasite cysts) by the mammalian host, newly-excysted juveniles (NEJs) emerge and invade the duodenal submucosa which causes significant pathology in heavy infections. The immature larvae then migrate upwards, along the gastrointestinal tract, and enter the rumen where they mature and begin to produce eggs. Despite their emergence, and sporadic outbreaks of acute disease, we know little about the molecular mechanisms used by C. daubneyi to establish infection, acquire nutrients and to avoid the host immune response. Here, transcriptome analysis of four intra-mammalian life-cycle stages, integrated with secretome analysis of the NEJ and adult parasites (responsible for acute and chronic disease respectively), revealed how the expression and secretion of selected families of virulence factors and immunomodulators are regulated in accordance with fluke development and migration. Our data show that whilst a family of cathepsins B with varying S2 sub-site residues (indicating distinct substrate specificities) are differentially secreted by NEJs and adult flukes, cathepsins L and F are secreted in low abundance by NEJs only. We found that C. daubneyi has an expanded family of aspartic peptidases, which is up-regulated in adult worms, although they are underrepresented in the secretome. The most abundant proteins in adult fluke secretions were helminth defence molecules (HDMs) that likely establish an immune environment permissive to fluke survival and/or neutralise pathogen-associated molecular patterns (PAMPs) such as bacterial lipopolysaccharide in the microbiome-rich rumen. The distinct collection of molecules secreted by C. daubneyi allowed the development of the first coproantigen-based ELISA for paramphistomosis which, importantly, did not recognise antigens from other helminths commonly found as co-infections with rumen fluke.This work was supported by an Industrial Partnership Award (to M.W.R) from the Biotechnology and Biological Sciences Research Council (BB/N017757/1) with additional financial support from Agrisearch and AHDB Beef & Lamb. N.A.M.O. was supported by a postgraduate studentship from the Department for the Economy (DfE) Northern Ireland
    • …
    corecore