35 research outputs found

    EFFECTS OF RADIANT HEAT FLUX ON CLEAN AGENT PERFORMANCE FOR CLASS-C STANDARDS

    Get PDF
    This thesis investigates the effects of radiant heat flux on clean agent extinguishing concentrations. This data is sought to support standards that address Class C hazards. Using the REED apparatus, performance of clean agents IG-100, IG-55, IG-541, HFC-125, HFC-227ea and FK-5-1-12 at heat flux levels of 0-40 kW/m2 was examined. It was found that clean agent extinguishing concentrations increased with an added heat flux. An alternate method of testing with the REED apparatus was also examined. Clean agents examined in the test were IG-100, IG-55, IG-541, HFC-125 and HFC-227ea at heat flux levels from 0-5 kW/m2. It was found that clean agent extinguishing concentrations increased by 33 to 45 percent from the original testing method. The new testing method was also found to be more repeatable and less time consuming

    Application of thermal energy storage materials for solar cooking : a comprehensive review

    Get PDF
    Food, cloth and shelter are three basic necessities of life. Food can be regarded as essential component for growth and survival of human being. So, the source of cooking is one of the most important things in our daily lives. There are various cooking sources of energy like kerosene, LPG, Firewood and Renewable sources etc. and one of them is solar cooking which is a renewable source of energy. Solar cooks are limited by the fact that cooking can only take place during daytime. If a thermal energy storage system is provided to solar cookers, food can be cooked during hours of evening or night. In the last few decades, the cooking sector has used various solar cookers, including the box type solar cooker, flat plate type solar cooker, parabolic dish type solar cooker, evacuated tube type solar cooker and Scheffler dish solar cooker with sensible heat, latent heat and Combined heat storage technologies for the solar cooker. As a result, this paper summarizes the investigation and analysis of the available thermal energy storage materials (sensible heat, latent heat and combined heat storage materials) to store heat during the daytime and use it for purposes other than daytime hours for use in solar cooking application. The current study also compares the Sensible heat, Latent heat and combined heat storage systems for cooking

    Optical signal phase retrieval with low complexity DC-value method

    Get PDF
    We propose a novel method to reconstruct the optical signal phase information using direct detection. The method is suitable for minimum phase signals and it enables low complexity, low latency, and low tone power operation. Moreover, the proposed method offers low optical complexity solution for the short-reach links compared with the concurrent phase retrieval techniques. We apply the method to M-ary signals with the transmitted power of as low as 3 dBm, and we are able to reach 70 km for 100 Gb/s quadrature phase shift keying (QPSK) system without optical amplification. Our method is based on the single sideband (SSB) and DC-Value property of the minimum phase signal. The SSB and DC-Value properties are iteratively imposed on the amplitude signal in the frequency domain to recover the full complex field from a directly detected optical signal. The normalized mean square error (NMSE) value between the available amplitude information and reconstructed minimum phase signal amplitude decreases after each iteration, providing global minimum convergence. A constant scaling factor is exploited to improve the convergence speed. The scaling factor provides 6 dB, 4.5 dB, and 2.5 dB error vector magnitude (EVM) gains with 4, 5, and 8 iterations, respectively.publishe

    Trends in Cloud Computing Paradigms: Fundamental Issues, Recent Advances, and Research Directions toward 6G Fog Networks

    Get PDF
    There has been significant research interest in various computing-based paradigms such as cloud computing, Internet of Things, fog computing, and edge computing, due to their various associated advantages. In this chapter, we present a comprehensive review of these architectures and their associated concepts. Moreover, we consider different enable technologies that facilitate computing paradigm evolution. In this context, we focus mainly on fog computing considering its related fundamental issues and recent advances. Besides, we present further research directions toward the sixth generation fog computing paradigm

    Network-on-Chip Topologies: Potentials, Technical Challenges, Recent Advances and Research Direction

    Get PDF
    Integration technology advancement has impacted the System-on-Chip (SoC) in which heterogeneous cores are supported on a single chip. Based on the huge amount of supported heterogeneous cores, efficient communication between the associated processors has to be considered at all levels of the system design to ensure global interconnection. This can be achieved through a design-friendly, flexible, scalable, and high-performance interconnection architecture. It is noteworthy that the interconnections between multiple cores on a chip present a considerable influence on the performance and communication of the chip design regarding the throughput, end-to-end delay, and packets loss ratio. Although hierarchical architectures have addressed the majority of the associated challenges of the traditional interconnection techniques, the main limiting factor is scalability. Network-on-Chip (NoC) has been presented as a scalable and well-structured alternative solution that is capable of addressing communication issues in the on-chip systems. In this context, several NoC topologies have been presented to support various routing techniques and attend to different chip architectural requirements. This book chapter reviews some of the existing NoC topologies and their associated characteristics. Also, application mapping algorithms and some key challenges of NoC are considered

    The unfinished agenda of communicable diseases among children and adolescents before the COVID-19 pandemic, 1990-2019: a systematic analysis of the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Communicable disease control has long been a focus of global health policy. There have been substantial reductions in the burden and mortality of communicable diseases among children younger than 5 years, but we know less about this burden in older children and adolescents, and it is unclear whether current programmes and policies remain aligned with targets for intervention. This knowledge is especially important for policy and programmes in the context of the COVID-19 pandemic. We aimed to use the Global Burden of Disease (GBD) Study 2019 to systematically characterise the burden of communicable diseases across childhood and adolescence. METHODS: In this systematic analysis of the GBD study from 1990 to 2019, all communicable diseases and their manifestations as modelled within GBD 2019 were included, categorised as 16 subgroups of common diseases or presentations. Data were reported for absolute count, prevalence, and incidence across measures of cause-specific mortality (deaths and years of life lost), disability (years lived with disability [YLDs]), and disease burden (disability-adjusted life-years [DALYs]) for children and adolescents aged 0-24 years. Data were reported across the Socio-demographic Index (SDI) and across time (1990-2019), and for 204 countries and territories. For HIV, we reported the mortality-to-incidence ratio (MIR) as a measure of health system performance. FINDINGS: In 2019, there were 3路0 million deaths and 30路0 million years of healthy life lost to disability (as measured by YLDs), corresponding to 288路4 million DALYs from communicable diseases among children and adolescents globally (57路3% of total communicable disease burden across all ages). Over time, there has been a shift in communicable disease burden from young children to older children and adolescents (largely driven by the considerable reductions in children younger than 5 years and slower progress elsewhere), although children younger than 5 years still accounted for most of the communicable disease burden in 2019. Disease burden and mortality were predominantly in low-SDI settings, with high and high-middle SDI settings also having an appreciable burden of communicable disease morbidity (4路0 million YLDs in 2019 alone). Three cause groups (enteric infections, lower-respiratory-tract infections, and malaria) accounted for 59路8% of the global communicable disease burden in children and adolescents, with tuberculosis and HIV both emerging as important causes during adolescence. HIV was the only cause for which disease burden increased over time, particularly in children and adolescents older than 5 years, and especially in females. Excess MIRs for HIV were observed for males aged 15-19 years in low-SDI settings. INTERPRETATION: Our analysis supports continued policy focus on enteric infections and lower-respiratory-tract infections, with orientation to children younger than 5 years in settings of low socioeconomic development. However, efforts should also be targeted to other conditions, particularly HIV, given its increased burden in older children and adolescents. Older children and adolescents also experience a large burden of communicable disease, further highlighting the need for efforts to extend beyond the first 5 years of life. Our analysis also identified substantial morbidity caused by communicable diseases affecting child and adolescent health across the world. FUNDING: The Australian National Health and Medical Research Council Centre for Research Excellence for Driving Investment in Global Adolescent Health and the Bill & Melinda Gates Foundation

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201
    corecore