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Abstract—We propose a novel method to reconstruct the
optical signal phase information using direct detection. The
method is suitable for minimum phase signals and it enables
low complexity, low latency, and low tone power operation.
Moreover, the proposed method offers low optical complexity
solution for the short-reach links compared with the concurrent
phase retrieval techniques. We apply the method to M-ary signals
with the transmitted power of as low as 3 dBm, and we are
able to reach 70 km for 100 Gb/s quadrature phase shift keying
(QPSK) system without optical amplification. Our method is
based on the single sideband (SSB) and DC-Value property of
the minimum phase signal. The SSB and DC-Value properties
are iteratively imposed on the amplitude signal in the frequency
domain to recover the full complex field from a directly detected
optical signal. The normalized mean square error (NMSE) value
between the available amplitude information and reconstructed
minimum phase signal amplitude decreases after each iteration,
providing global minimum convergence. A constant scaling factor
is exploited to improve the convergence speed. The scaling factor
provides 6 dB, 4.5 dB, and 2.5 dB error vector magnitude (EVM)
gains with 4, 5, and 8 iterations, respectively.

Index Terms—Minimum phase signal, direct detection (DD),
iterative reconstruction, carrier to signal power ratio (CSPR).

I. INTRODUCTION

INIMUM phase signals enable optical field amplitude
and phase information retrieval using direct detection
[1], [2]. However, minimum phase retrieval based on non-
iterative methods tends to require high sampling rates and
high tone powers, which consequently leads to the need for
high speed digital signal processing (DSP) [3] and induces
nonlinear distortions [4], respectively. On the other hand,
iterative methods tend to present high latency [5]. To address
the aforementioned limitations, a novel low complexity, low
latency, and low tone power iterative method is proposed.
Double sideband optical direct detection schemes offer a
low cost and simple solution to extract information from an
optical signal [6]. However, they impose an irreversible loss
of phase information [7]. Single sideband (SSB) methods have
been explored to obtain amplitude and phase information using
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direct detection [8]. However, they tend to suffer a strong
penalty due to signal to signal beat interference (SSBI) [8].
The adverse effects of SSBI can be alleviated either by enlarg-
ing the band-gap between the carrier and information signal
or by increasing the carrier to signal power ratio (CSPR),
at the expense of the spectral efficiency [9] or nonlinear
signal degradation [10], respectively. Alternative methods to
mitigate the effects of SSBI includes the utilization of multi-
core fibers and balanced detection [11], [12]. More recently,
a minimum phase signal based Kramers-Kronig receiver has
been proposed which significantly reduces the impact of
SSBI [5], [13]. The minimum phase condition of the signal
implies that log-magnitude and phase are related by the Hilbert
transform, and this requirement can be fullfilled by adding a
constant DC value in the SSB complex signal [14]. However,
the nonlinear operations (logarithmic and exponential) in the
Kramers-Kronig algorithm demand the DSP to be operated
much faster than Nyquist sampling rate to accommodate
spectral broadening [4]. To reduce the sampling rate, some
approximations have been proposed [15]. Nevertheless, the
proposed approximations tend to require higher tone powers
which result in an increase of the nonlinear distortions [16]. An
upsampling free iterative method based on Hilbert relationship
is proposed in [S]. However, this method includes filtering
and a nonlinear operation inside the iterative process [5], [17].
In the context of image processing, a phase-retrieval iterative
method based on alternate projections on the space-domain
and Fourier-domain is proposed in [18]. In [19], the space-
domain magnitude initial information is replaced by a non-
negativity constraint such that the recovering algorithm relies
only on the Fourier magnitude information. Other alterna-
tives to the non-negativity constraint, like steepest-descent,
conjugate-gradient, basic input-output, output-output and hy-
brid input-output algorithms, have also been presented [20].
These methods tend to suffer from slow and local minimum
convergence problems [20]. In [21], a Fourier-domain iterative
method, which avoids the local minimum problem is proposed,
where causality and initial-value condition are imposed in the
time-domain.

Starting from the SSB and DC value properties of the
minimum phase signal, we develop a novel iterative method to
reconstruct the phase of the optical field in direct detection op-
tical communication systems. The proposed method imposes
the minimum phase signal property in the frequency domain,
which allows the removal of the nonlinear operations in the
iterative process, thus reducing significantly the complexity
and nonlinear distortions. A constant scaling factor used in
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Fig. 1: The schematic of the DC-Value iterative method to reconstruct the full electric field of a minimum phase signal from its intensity information. A
constant scaling factor p helps to speed up the convergence process. The process iterates continuously until the NMSE between |A(¢y)| and | Ap (5 )| becomes

less than threshold error €.

the first iteration provides 6 dB, 4.5 dB, and 2.5 dB error
vector magnitude (EVM) gains for iteration number 4, 5, and
8, respectively.

Besides the introduction, this paper comprises four sections.
In Section II, we describe the proposed DC-Value iterative
method. In Sections III and IV, we assess the performance
of the proposed method in a scenario without and with
noise, respectively. In the last section, we present the major
concluding remarks.

II. DC-VALUE ITERATIVE METHOD

Figure 1 shows the diagram of the proposed iterative re-
construction method. The complex envelope of the incoming
SSB optical signal is A(t) = A, + As(t), where A, is
the complex amplitude of the optical carrier which ensures
the DC-Value property, and A(t) is the complex SSB signal.
When the field is detected using a single photodetector, the
generated photocurrent can be expressed as [16],

I(t) (&ffr 2Re{ A, As(t)} + |As(t)? ) (1)

DC carrier-signal signal-signal

where, Re{-} represents the real part of {-}, the first term,
| A,|?, is the DC component, the second term, 2Re{ A, A4(t)},
is the carrier-signal beating, and the last term, |A,(t)|?, is
the signal-signal beating. The photocurrent is then amplified
using a transimpedance amplifier (TIA) and filtered by a
low pass filter. For simplicity, we consider the photodetector
responsivity R and the TIA gain G such that RG = 1. Without
loss of generality, we assume that A, is real, i.e. the A, phase
is zero, and the phase of A4(t) is measured in relation to
the phase of A,. Note that both signals A, and A;(t) are
supposed to be generated in the transmitter from the same

laser and within the laser coherence time. The power of the
carrier A, in relation to the power of the signal defines the
carrier to signal power ratio (CSPR). The CSPR is defined as,
|Ao|”
R TP
The current signal is then digitized using an analog to
digital converter (ADC) at the frequency that is not less than
the Nyquist limit, i.e. 2B, where B is is the photocurrent
bandwidth. Afterwards, the square-root operation is carried
out to obtain the amplitude | A(t;)| of the optical field. Taylor
series expansion of the nonlinear square root operation can be
written as (2), showing the presence of the Re{A(tx)} term
and higher order terms. As evident from (2), the impact of
higher order terms can be made less severe by increasing the
tone power. After the square root operation, see Fig. 1, the
amplitude information signal |A(¢x)| is multiplied by a phase
correction factor €**?»~1(t%) which outputs the complex signal
Al (tx), where n represents the iteration number. In the first
iteration (for n = 1), the phase correction factor is assumed
to be zero, i.e. 6y(t;) = 0. Next, the SSB and DC value
properties (see Appendix A and B) of the minimum phase
signal are imposed on the Fourier transformed signal A’, (wi)
to attain /In(wk) as,

3)

pA’,(wy), for wy >0
NA,,
0, for wr < 0

Ap(wr) = “4)

for w, =0

where, N represents the length of the FFT, n represents the
iteration number, and p denotes the scaling factor given by,

)2, forn=1
p= 1,

5
forn>1 ®)

[ A(t)|=v/A2 + 24.Re{ A, (1)} + [As (D)2
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Fig. 2: Magnitude spectrum of the input signal to the proposed method and output minimum phase signal after execution of iteration 1, 2, 5 and 10 with the
CSPR of 6 dB. Graphs L, I, III and IV (top-panel) show the spectrum of the input signal A/, (¢), and graphs V, VI, VII, and VIII (bottom-panel) show the
spectrum of the recovered minimum phase signal Ay, (t)) at the end of iteration number 1, 2, 5, and 10, respectively.
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Fig. 3: Recovered IQ constellations of the 30 Gbaud 16QAM signal by the proposed method after the execution of iteration numbers 0, 1, 5 and 10 with the
CSPR of 6 dB. After 10 iterations the recovered constellation is very close to the ideal constellation.

The input signal, A’ (1), for the first iteration consists of
a real-valued amplitude signal |A(t;)| ( i.e. 60o(tx) = 0).
The minimum phase condition imposed on the signal forces
the negative frequency components to zero and it generates
complex-valued signal A;(t;) in the time domain (starts
acquiring the phase information). As a consequence of forcing
negative frequency components to zero, the signal Aj(ty)
will have its real and imaginary parts amplitude scaled by
a factor 0.5. Therefore, we set a scaling factor p = 2 to adjust
the amplitude of the information signal in the first iteration.
As shown in the next section, the scaling factor p used in
the reconstruction process greatly speed up the convergence
process (see Fig. 5). After imposing minimum phase condition,
the inverse Fourier transform of the A, (wg) is computed to
obtain A, (tx). The normalized mean squared error (NMSE)
€n between |A(ty)| and |A,(tr)| can be calculated as,

(|A<tk>|—|An<tk>|)2

If the value of the error ¢, is higher than the threshold error
epm then the updated phase correction vector corresponding
to A,(t;) can be calculated as e?% (k) %. This
phase estimate €*%?»(**) can be supplied as an updated phase
information for the subsequent iteration as shown in Fig.1.
This process would repeat continuously until the NMSE ¢,
reaches below the threshold cy. The NMSE ¢, between
the known magnitude |A(¢x)| and the estimated magnitude
| Ay, (t)| is monotonically decreasing after each iteration and
has lower bound to zero, therefore, the reconstruction process
converges to a limit point.

The convergence process of the proposed DC-Value iterative
method is shown in Fig. 2, where the spectrum of the input
Al (t) and the recovered minimum phase signal A, (¢;) are
displayed at the end of iteration number 1, 2, 5, and 10.
For the assessment of the convergence process, minimum
phase signal A(t) corresponding to 30 Gbaud 16QAM with
6 dB CSPR value is employed in the reconstruction process.
For the first iteration, the input signal is |A(t;)| %) =
|A(t1)| (see Fig. 2(i)) since €*9?0(*#) is an unitary vector, and
the corresponding output A; (), is the first estimation of the
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Fig. 4: Error vector magnitude (EVM) versus iteration number of the recovered signal considering different CSPR values, for (i) QPSK, (ii) 16QAM, and (iii)
64QAM signals. Each curve was obtained by varying the DC value to obtain desired CSPR values as shown in the legends.

minimum phase signal as shown in Fig. 2(v). Similarly, input
and output corresponding to the second iteration can be given
as |A(t)| e () (where e01(tx) = A;(t)/|A1(t)]) and
As(ty) as shown in Fig. 2(ii) and Fig. 2(vi), respectively.
Likewise, the input and output signals at the end of iteration
5 and 10 are shown in Fig. 2(iii) and Fig. 2(vii), and Fig.
2(iv) and Fig. 2(viii), respectively. The accuracy of the signal
reconstruction process increases with the number of iterations
and high CSPR value.

At the end, the recovered minimum phase signal A(ty) is
passed through the DC remover and then downconverted to
recover the 16QAM signal. Figure 3 shows the constellation
of the recovered 16QAM signal for the iteration number 0,
1, 5, and 10. For the iteration 1, the input does not contain
any phase information i.e. 60y (tx) = 0, as shown in Fig. 3(i),
and at the end of iteration 1, it starts recovering the phase
information as shown in Fig. 3(ii). As it is evident that error
in the recovered signal is reduced in the subsequent iterations
as shown in Fig. 3(iii) and 3(iv), which display the recovered
signal constellation after iteration 5 and 10, respectively. It
requires approximately 10 number of iterations to achieve
close proximity to the ideal constellation with 6 dB CSPR.

III. PERFORMANCE ASSESSMENT WITHOUT NOISE

In the following, we assess the performance of the proposed
method without noise for different CSPR values and number of
iterations for the M-ary modulation formats. For the perfor-
mance assessment of the method, single-channel 100 Gb/s
QPSK, 16QAM, and 64QAM signals with 20% overhead
(120 Gb/s) are employed, respectively. At the transmitter
side, the complex signals are generated using a raised cosine
pulse shaping filter with 0.05 roll-off factor. The complex
signal is then multiplied by e*?"f** ie. it is upconverted,
to generate SSB signal A;(tx), where f > B/2 and B is
the bandwidth of the signal. Next, DC value is added to the
SSB signal ensuring that real part of the SSB signal becomes
non-negative, which generates minimum phase signal A(¢y)
in digital domain. The desired CSPR value can be adjusted
either by varying DC value or signal power. At the receiver
side, the signal is detected using direct detection technique
and then processed to recover the full electric field of the

minimum phase signal A(tx) as discussed in section II. The
recovered minimum phase signal A(ty) is passed through DC
remover and then downconverted by e~ *2"ft* to recover the
information signal. The EVM metric is employed to provide a
quantitative measure of the recovered signal by the proposed
method. The EVM can be estimated as,

(I — Ix)? + (Qx — Qi)?)
- (7)
(I} +Q7)

M=z

k

EVMpys =

M=

k=1

where, [, and () represent the in-phase and quadrature
samples of the k*" transmitted symbol, respectively, and I,
and Qy represent the in-phase and quadrature samples of
the k" recovered symbol, respectively, and N represents the
length of the sequence. For the performance assessment, CSPR
values of 3 dB, 4 dB, 5 dB, 6 dB, 7 dB, and 8 dB are
employed and the reconstruction process is iterated for 15
iterations to recover the minimum phase signal. The EVM
of the recovered QPSK, 16QAM and 64QAM signals after
execution of each iteration for different CSPR values are
displayed in Fig. 4(i), Fig. 4(ii), and Fig. 4(iii), respectively. It
is shown that the EVM value improves after execution of each

-5 T T T

—o— Without scaling factor p
—O— With scaling factor p

EVM (dB)

1 3 5 7 9 11 13 15
Iteration Number

Fig. 5: Comparison of EVM without and with scaling factor p for the QPSK
signal.
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Fig. 7: EVM of the recovered signal for the (i) QPSK (70 km), and (ii) 16QAM (50 km) signals with 3 dBm transmitted power. R denotes the upsampling
factor used in the Kramers-Kronig method. Blue and red dashed lines show the corresponding SD-FEC and HD-FEC limits, respectively.

iteration, providing global minimum convergence. Without
noise, the reconstruction process improves with the increase
of the CSPR and the number of iterations. In the following,
we discuss the impact of the inclusion of the scaling factor.
Figure 5 shows the EVM values of the recovered signal by
the proposed method with and without scaling factor p. The
figure shows that implementation of the scaling factor provides
approximately 6 dB, 4.5 dB, and 2.5 dB EVM gains for
iteration number 4, 5, and 8, respectively. This shows that there
is a considerable increase in the EVM gain with low number
of iterations with the implementation of the scaling factor.
Alternatively, the employed scaling factor helps in enhancing
the system convergence by reducing the required numbers of
iterations n by 2. That is, instead of n iterations we need
n — 2 iterations. For simplicity and clarity, we present the
results that are based on the QPSK implementation. However,
it should be noted that the offered advantages of the scaling
factor are also applicable to other modulation formats (i.e.
16QAM and 64QAM). It should also be noted that the scaling
factor p is only different from 1 in the first iteration, therefore
the condition for global minimum convergences is always
satisfied, see Appendix B.

IV. PERFORMANCE ASSESSMENT IN PRESENCE OF NOISE

This section shows the simulation analysis of the pro-
posed method in the presence of noise using an in-house
C++/MATLAB simulator, named NetXpto-LinkPlanner, devel-
oped by the researchers and Ph.D. students of the Instituto de
Telecomunicagdes over the years. At the transmitter, the signal
is modulated using a Mach-Zehnder 1Q modulator operating
in its linear regime. For optical signal transmission, we chose
a standard single-mode fiber (SSMF) with an attenuation
of 0.2 dB/km, chromatic dispersion of 17 ps/nm/km, and
nonlinear coefficient v = 0.0014 W~'m~!. Inside the fiber,
the waveform evolution is calculated by using the split-
step Fourier method with a step-size of 1 km, taking into
consideration that we are operating in a quasi-linear regime.
Also, we limit the launch power to 3 dBm for a quasi-linear
operation regime. As we have considered short-reach links,
the polarization-mode-dispersion (PMD) effects are negligible
[22]. Since no optical pre-amplifier is used prior to photode-
tection, the incident optical power on the photodetector is low
and the shot noise contribution is negligible, thus making the
system performance essentially limited by the thermal noise.
For the analysis, we have considered the input-referred noise
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TABLE I: COMPUTATIONAL COMPLEXITY COMPARISON

Kramers-Kronig [5]

Iterative linear filter [13]

Proposed DC-Value iterative

Number of multiplier ~ (3Ns + Ny /2 4+ 2)RN

Number of adder (3Ns + N, /2)RN

Memory 16RNT 8N*

(4NlogzN + 3N)k

(4NlogaN + N)k + N

(4NlogaN + 6N)k
(4NlogaN + N)k

12Nt

*k: Number of iterations; *R: Upsampling factor; T kbits; ®: bits

current spectral density of 30 pA/ V/Hz [22] and an ADC with
8-bit vertical resolution. Notice that, the ADC noise is also
negligible considering the thermal noise in the receiver.

Figure 6 shows the EVM of the recovered QPSK and
16QAM signals after 20 km of SSMF for different CSPR val-
ues. It shows that SSBI becomes more severe and degrade the
quality of recovered signal at low CSPR ratios. Contrarily, very
high CSPR would deteriorate the SNR (sensitivity penalty) at
the receiver end, which limits the system performance. Figure
6 shows that irrespective of the modulation formats, EVM is
decreasing after each iteration.

The iterative technique based on the linear filtering dis-
cussed in [13] works by calculating SSBI terms and subtract-
ing them from the detected signal. However, due to the inaccu-
racy of the SSBI approximation caused by the introduction of
additional distortion by the linear filters, this technique has the
drawback of limited effectiveness. It is shown that Kramers-
Kronig provides better SSBI compensation effectiveness over
iterative linear filtering methods [13]. Therefore, we present a
comparative analysis of the proposed DC-Value iterative with
the Kramers-Kronig [5] and the upsampling free Kramers-
Kronig [15] methods. Figure 7 shows the EVM of the re-
covered signal by the Kramers-Kronig, the upsampling free
Kramers-Kronig, and the proposed DC-Value iterative methods
for the QPSK and 16QAM signals after 70 km and 50 km
SSMF, respectively. We compare the results of the Kramers-
kronig (R = 1 and R = 2) [5] , upsampling free Kramers-
Kronig [15], and proposed DC-value iterative method. Figure
7(i) shows that ~1 dB EVM gain is achieved over Kramers-
kronig (R = 2) and upsampling free Kramers-Kronig (R = 1)
after the 4 iterations. Similarly, in 16QAM (see Fig. 7(ii)), the
DC-value iterative method requires ~2.75 dB less CSPR to
surpasses the accuracy of the Kramers-Kronig (R = 2) and
upsampling free Kramers-Kronig with 3 iterations.

A. Computational Complexity Analysis

In this subsection, we analyze the computational complex-
ity of the proposed method and present a comprehensive
comparison with the Kramers-Kronig [5] and the iterative
linear filter [13] methods. Considering a DSP chip low clock
frequency, fcock, parallelization is employed to realize a
high sampling frequency, f;. The degree of parallelization
is determined by the N = [fs/fciock|, Where [-] is the
ceiling operator. Considering the ADC with an 8-bit resolution,
it requires 4 kbits memory to fill each lookup table (LUT)
with 2-byte floating-point number (28 x 2%). For an efficient
FFT implementation, we set the degree of parallelization to
N = 2", where m > 1. The Kramers-Kronig requires digital
signal upsampling and downsampling, which can be realized
by an N, tap FIR filter. The Hilbert transformation in the
Kramers-Kronig method can be implemented using an FIR
filter having N, taps. This Hilbert filter requires Ny /2 real-
valued adders and N}, /2 real-valued multipliers [4].

Figure 8(i) shows the schematic of the hardware imple-
mentation for the proposed iterative method. First, a serial
to parallel (S2P) process is carried out to realize the par-
allelization, followed by a square-root operation. Next, the
magnitude is multiplied with the complex phase correction
factor which requires 2N real multiplications. Following that,
FFT is calculated requiring %loggN complex multiplications
(i.e. 4 real multiplications and 2 real additions) and NlogoN
complex additions (i.e. 2 real additions). For the minimum
phase condition, the scaling factor implementation can be im-
plemented by 1-bit shift operation. Afterwards, IFFT requires
the same complexity as FFT. Next, the phase correction factor
is calculated by taking |(-)|? (i.e. 2N real multiplications and
N addition), followed by a square-root, an inverse and a
multiplication (i.e 2N real multiplication) operation. Similarly,
we estimate the complexity for the iterative linear filter method
shown in Fig. 8(ii). In iterative linear filter method, the
sideband filter includes a multiplication by 2 operation which
can be implemented by 1-bit shift operation. The estimated
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computational complexity comparison of three methods (the
Kramers-Kronig [5], the iterative linear filter [13], and the
DC-Value iterative proposed here) is presented in Table I.
The required computational complexity increases linearly
with the sampling frequency f, since higher degree of paral-
lelization N is required to to realize high fs when f.ocr is
fixed. Considering both N and N with 128 taps, N = 256,
R =2,k =5, and fe o, = 200 MHz, Kramers-Kronig
method requires ~ 10° real-valued adders and multipliers,
where this number would be reduced to ~ 4.5 x 10* for both
iterative linear filter method and proposed iterative method,
respectively. Despite the FFT/IFFT pairs are involved, the
proposed method exhibits low latency since it requires less
number of multipliers and adders operation to be performed
compared to Kramers-Kronig algorithm. Also, the proposed
DC-Value iterative method enables higher accurate reconstruc-
tion with low CSPR requirement (no extra receiver sensitivity
penalty unlike [4]) without the need for digital upsampling.

V. CONCLUSION

Using the SSB and DC-Value properties of the minimum
phase signal, we have proposed an iterative method which
reconstructs the full electric field minimum phase signal from
its amplitude information in direct detection optical systems.
The proposed reconstruction technique does not contain non-
linear operations. This ensures upsampling free reconstruction
process at low tone power (low CSPR) operation. Moreover,
we have shown that a constant scaling factor p used in the
iterative process speeds up the convergence process. Also, we
have performed a simulation analysis of a 100 Gb/s (120 Gb/s
system with 20% overhead). Results show that the proposed
technique provides ~1 dB EVM gain when compared with
the Kramers-kronig method for a QPSK signal after 70 km
of SSMF transmission. Besides, regarding the 16QAM signal,
the proposed technique requires ~2.75 dB lesser tone power
to surpass the accuracy of the other two methods, with as low
as 3 iterations. The presented results show that the proposed
technique presents salient features that can facilitate effective
field reconstruction, making it a promising technique in the
direct detection based optical communication systems.

APPENDIX A
MINIMUM PHASE SIGNAL

The signal, whose logarithm is analytic in the upper half of
complex z plane with z =t 4 i¢7 can be given as,

A(t) = Ay + A1) @®)

where A(t) is a minimum phase signal in which |A(¢)] is the
SSB signal and a constant A, > |A4(t)|. The analytic signal
vanish at the extremities of the upper half of the complex z
plane which can be viewed from the (8) as,

Alz) = 4, [1 + AZ(:)} ©)
Since A(z) is Fourier transformable,
In{A(0)} = lim In{A(2)} = In{A,}, for 7>0. (10)

A(z)
Ao

lim In [ (11)

} =0, forT>0.
Z—00

where A(w) is the Fourier transform of A(z). Therefore, the
necessary and sufficient condition of minimum phase signal
includes (i) the analyticity (i.e. A(w) = 0) for w < 0, and (ii)
DC-Value property A(O) = A, in the frequency domain which
can be used to develop an iterative algorithm to reconstruct the
minimum phase signal from its magnitude information.

APPENDIX B
NMSE REDUCTION

Consider an error function, F,,, as the mean squared error
between known magnitude, |A(t;)|, and the estimate magni-
tude, | A,,(tx)|, on each iterations as,

N—

,_.

2
| 1AGt) 1= An () (12)

k=0
where NNV is the number of samples. Following [21], we show

that the error function is a monotonically decreasing function.
Consider the identity |e[??»(*)]|2=1 to express (12) as,

N 1 9
E, = ‘ |A(ty)[e(90n () | A, (£,)]eli00n (1))
k=0
N-1 ~
By =) |A,(tk) — An(tr)]” (13)
k=0

From the Parseval’s theorem (13) can be given in frequency
domain as,

N-1

— Ap(wi)? (14)

1
En N
k=0
where A, (wy) and A, (wy) are the FFT of A’ (t;) and
fln(tk), respectively. From the minimum phase condition, it
follows that, for w; > 0,

A" (wi) = Ap(wr) P> A% (wi) = Apgr (@) P= 0 (15)
and for wi <0,
A" (wi) = Ap(wi)[P= A% (wi) = Anga (wi)]®. (16)

Summing (15) and (16) over all wy, we get,

En = |A/n(wk) - An(wk)|22 |A/n(wk) - An-{-l (wk)|2 (17)

Therefore, from Parseval’s theorem, and (17),

v
= 2\

Z Ay Wk An+1(wk)‘2
k=
—1

2
Enz Y [ 1A Auna ()] | = B (8)

=~
I

0

Thus, E,, is a monotonically decreasing function.
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