417 research outputs found

    Viewgraph preparation made easier

    Get PDF
    Rolls of color-reversal film permit exposure of over 200 viewgraphs on one film loading. Time is saved in film development as roll film lends itself readily to automatic processing

    Gender differences in the physiological responses and kinematic behaviour of elite sprint cross-country skiers

    Get PDF
    Gender differences in performance by elite endurance athletes, including runners, track cyclists and speed skaters, have been shown to be approximately 12%. The present study was designed to examine gender differences in physiological responses and kinematics associated with sprint cross-country skiing. Eight male and eight female elite sprint cross-country skiers, matched for performance, carried out a submaximal test, a test of maximal aerobic capacity (VO2max) and a shorter test of maximal treadmill speed (Vmax) during treadmill roller skiing utilizing the G3 skating technique. The men attained 17% higher speeds during both the VO2max and the Vmax tests (P < 0.05 in both cases), differences that were reduced to 9% upon normalization for fat-free body mass. Furthermore, the men exhibited 14 and 7% higher VO2max relative to total and fat-free body mass, respectively (P < 0.05 in both cases). The gross efficiency was similar for both gender groups. At the same absolute speed, men employed 11% longer cycles at lower rates, and at peak speed, 21% longer cycle lengths (P < 0.05 in all cases). The current study documents approximately 5% larger gender differences in performance and VO2max than those reported for comparable endurance sports. These differences reflect primarily the higher VO2max and lower percentage of body fat in men, since no gender differences in the ability to convert metabolic rate into work rate and speed were observed. With regards to kinematics, the gender difference in performance was explained by cycle length, not by cycle rate

    Measurements of double-helicity asymmetries in inclusive J/ψJ/\psi production in longitudinally polarized p+pp+p collisions at s=510\sqrt{s}=510 GeV

    Full text link
    We report the double helicity asymmetry, ALLJ/ψA_{LL}^{J/\psi}, in inclusive J/ψJ/\psi production at forward rapidity as a function of transverse momentum pTp_T and rapidity y|y|. The data analyzed were taken during s=510\sqrt{s}=510 GeV longitudinally polarized pp++pp collisions at the Relativistic Heavy Ion Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision energy, J/ψJ/\psi particles are predominantly produced through gluon-gluon scatterings, thus ALLJ/ψA_{LL}^{J/\psi} is sensitive to the gluon polarization inside the proton. We measured ALLJ/ψA_{LL}^{J/\psi} by detecting the decay daughter muon pairs μ+μ\mu^+ \mu^- within the PHENIX muon spectrometers in the rapidity range 1.2<y<2.21.2<|y|<2.2. In this kinematic range, we measured the ALLJ/ψA_{LL}^{J/\psi} to be 0.012±0.0100.012 \pm 0.010~(stat)~±\pm~0.0030.003(syst). The ALLJ/ψA_{LL}^{J/\psi} can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken xx: one at moderate range x0.05x \approx 0.05 where recent RHIC data of jet and π0\pi^0 double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-xx region x2×103x \approx 2\times 10^{-3}. Thus our new results could be used to further constrain the gluon polarization for x<0.05x< 0.05.Comment: 335 authors, 10 pages, 4 figures, 3 tables, 2013 data. Version accepted for publication by Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    L\'evy-stable two-pion Bose-Einstein correlations in sNN=200\sqrt{s_{_{NN}}}=200 GeV Au++Au collisions

    Full text link
    We present a detailed measurement of charged two-pion correlation functions in 0%-30% centrality sNN=200\sqrt{s_{_{NN}}}=200 GeV Au++Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from L\'evy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter λ\lambda, the L\'evy index of stability α\alpha and the L\'evy length scale parameter RR as a function of average transverse mass of the pair mTm_T. We find that the positively and the negatively charged pion pairs yield consistent results, and their correlation functions are represented, within uncertainties, by the same L\'evy-stable source functions. The λ(mT)\lambda(m_T) measurements indicate a decrease of the strength of the correlations at low mTm_T. The L\'evy length scale parameter R(mT)R(m_T) decreases with increasing mTm_T, following a hydrodynamically predicted type of scaling behavior. The values of the L\'evy index of stability α\alpha are found to be significantly lower than the Gaussian case of α=2\alpha=2, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition.Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v2 is version accepted for publication in Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV

    Get PDF
    We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of higher cumulants of net-charge multiplicity distributions in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV

    Full text link
    We report the measurement of cumulants (Cn,n=14C_n, n=1\ldots4) of the net-charge distributions measured within pseudorapidity (η<0.35|\eta|<0.35) in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. C1/C2C_1/C_2, C3/C1C_3/C_1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2=μ/σ2C_1/C_2 = \mu/\sigma^2 and C3/C1=Sσ3/μC_3/C_1 = S\sigma^3/\mu can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. C as a Rapid Communication. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Inclusive cross section and double-helicity asymmetry for π0\pi^{0} production at midrapidity in pp++pp collisions at s=510\sqrt{s}=510 GeV

    Full text link
    PHENIX measurements are presented for the cross section and double-helicity asymmetry (ALLA_{LL}) in inclusive π0\pi^0 production at midrapidity from pp++pp collisions at s=510\sqrt{s}=510~GeV from data taken in 2012 and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The π0ALL\pi^{0}A_{LL} results follow an increasingly positive asymmetry trend with pTp_T and s\sqrt{s} with respect to the predictions and are in excellent agreement with the latest global analysis results. This analysis incorporated earlier results on π0\pi^0 and jet ALLA_{LL}, and suggested a positive contribution of gluon polarization to the spin of the proton ΔG\Delta G for the gluon momentum fraction range x>0.05x>0.05. The data presented here extend to a currently unexplored region, down to x0.01x\sim0.01, and thus provide additional constraints on the value of ΔG\Delta G. The results confirm the evidence for nonzero ΔG\Delta G using a different production channel in a complementary kinematic region.Comment: 413 authors, 8 pages, 4 figures. v2 is version accepted as PRD Rapid Communication. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore