35 research outputs found

    Abyssal ocean warming around Antarctica strengthens the Atlantic overturning circulation

    Get PDF
    The abyssal warming around Antarctica is one of the most prominent multidecadal signals of change in the global ocean. Here we investigate its dynamical impacts on the Atlantic Meridional Overturning Circulation (AMOC) by performing a set of experiments with the ocean-sea ice model NEMO-LIM2 at 1/2 degrees horizontal resolution. The simulations suggest that the ongoing warming of Antarctic Bottom Water (AABW), already affecting much of the Southern Hemisphere with a rate of up to 0.05 degrees C decade(-1), has important implications for the large-scale meridional overturning circulation in the Atlantic Ocean. While the abyssal northward flow of AABW is weakening, we find the upper AMOC cell to progressively strengthen by 5-10% in response to deep density changes in the South Atlantic. The simulations suggest that the AABW-induced strengthening of the AMOC is already extending into the subtropical North Atlantic, implying that the process may counteract the projected decrease of the AMOC in the next decades

    Bio-physical interactions and feedbacks in a global climate model

    Get PDF
    This PhD thesis addresses the topic of large-scale interactions between climate and marine biogeochemistry. To this end, centennial simulations are performed under present and projected future climate conditions with a coupled ocean-atmosphere model containing a complex marine biogeochemistry model. The role of marine biogeochemistry in the climate system is first investigated. Phytoplankton solar radiation absorption in the upper ocean enhances sea surface temperatures and upper ocean stratification. The associated increase in ocean latent heat losses raises atmospheric temperatures and water vapor. Atmospheric circulation is modified at tropical and extratropical latitudes with impacts on precipitation, incoming solar radiation, and ocean circulation which cause upper-ocean heat content to decrease at tropical latitudes and to increase at middle latitudes. Marine biogeochemistry is tightly related to physical climate variability, which may vary in response to internal natural dynamics or to external forcing such as anthropogenic carbon emissions. Wind changes associated with the North Atlantic Oscillation (NAO), the dominant mode of climate variability in the North Atlantic, affect ocean properties by means of momentum, heat, and freshwater fluxes. Changes in upper ocean temperature and mixing impact the spatial structure and seasonality of North Atlantic phytoplankton through light and nutrient limitations. These changes affect the capability of the North Atlantic Ocean of absorbing atmospheric CO2 and of fixing it inside sinking particulate organic matter. Low-frequency NAO phases determine a delayed response of ocean circulation, temperature and salinity, which in turn affects stratification and marine biogeochemistry. In 20th and 21st century simulations natural wind fluctuations in the North Pacific, related to the two dominant modes of atmospheric variability, affect the spatial structure and the magnitude of the phytoplankton spring bloom through changes in upper-ocean temperature and mixing. The impacts of human-induced emissions in the 21st century are generally larger than natural climate fluctuations, with the phytoplankton spring bloom starting one month earlier than in the 20th century and with ~50% lower magnitude. This PhD thesis advances the knowledge of bio-physical interactions within the global climate, highlighting the intrinsic coupling between physical climate and biosphere, and providing a framework on which future studies of Earth System change can be built on

    Multidecadal Changes in Southern Ocean Ventilation since the 1960s Driven by Wind and Buoyancy Forcing

    Get PDF
    Enhanced Southern Ocean ventilation in recent decades has been suggested to be a relevant modulator of the observed changes in ocean heat and carbon uptake. This study focuses on the Southern Ocean midlatitude ventilation changes from the 1960s to the 2010s. A global 1/4° configuration of the NEMO–Louvain-la-Neuve sea ice model, version 2 (LIM2), including the inert tracer CFC-12 (a proxy of ocean ventilation) is forced with the CORE, phase II (CORE-II), and JRA-55 driving ocean (JRA55-do) atmospheric reanalyses. Sensitivity experiments, where the variability of wind stress and/or the buoyancy forcing is suppressed on interannual time scales, are used to unravel the mechanisms driving ventilation changes. Ventilation changes are estimated by comparing CFC-12 interior inventories among the different experiments. All simulations suggest a multidecadal fluctuation of Southern Ocean ventilation, with a decrease until the 1980s–90s and a subsequent increase. This evolution is related to the atmospheric forcing and is caused by the (often counteracting) effects of wind stress and buoyancy forcing. Until the 1980s, increased buoyancy gains caused the ventilation decrease, whereas the subsequent ventilation increase was driven by strengthened wind stress causing deeper mixed layers and a stronger meridional overturning circulation. Wind stress emerges as the main driver of ventilation changes, even though buoyancy forcing modulates its trend and decadal variability. The three Southern Ocean basins take up CFC-12 in distinct density intervals but overall respond similarly to the atmospheric forcing. This study suggests that Southern Ocean ventilation is expected to increase as long as the effect of increasing Southern Hemisphere wind stress overwhelms that of increased stratification

    Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    Get PDF
    This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are more than 200 m day−1. The current vertical velocity field is computed from a 1/16°×1/16° Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day−1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins

    Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations

    Get PDF
    The response of eddy kinetic energy (EKE) to the strengthening of Southern Hemisphere winds occurring since the 1950s is investigated with a global ocean model having a resolution of 1/12° in the Antarctic Circumpolar Current domain. The simulations expose regional differences in the relative importance of stochastic and wind-related contributions to inter-annual EKE changes. In the Pacific and Indian sectors the model captures the EKE variability observed since 1993 and confirms previous hypotheses of a lagged response to regional wind stress anomalies. Here, the multi-decadal trend in wind stress is reflected in an increase in EKE typically exceeding 5 cm2 sec-2 decade-1. In the western Atlantic EKE variability is mostly stochastic, is weakly correlated with wind fluctuations, and its multi-decadal trends are close to zero. The non-uniform distribution of wind-related changes in the eddy activity could affect the regional patterns of ocean circulation and biogeochemical responses to future climate change

    Impacts of natural and anthropogenic climate variations on North Pacific plankton in an Earth System Model

    No full text
    The impacts of natural atmospheric variability and anthropogenic climate change on the spatial distribution, seasonality, structure, and productivity of North Pacific plankton groups are investigated by means of an Earth System Model (ESM) that contains a plankton model with variable stoichiometry. The ESM is forced with observed greenhouse gases for the 20th century and with the Intergovernmental Panel on Climate Change A1B Emission Scenario for the 21st century. The impacts of the two main modes of variability – connected with the Aleutian Low (AL) strength and with the North Pacific Oscillation (NPO) – are considered. When the AL is strong, primary productivity and chlorophyll concentrations are higher in the central Pacific, the seasonality of plankton is enhanced, and the classical grazing chain is stimulated, whereas in the Alaskan Gyre the model simulates a chlorophyll decrease and a shift toward smaller phytoplankton species. A stronger NPO increases productivity and chlorophyll concentration at ∼45°N. In the anthropogenic climate change scenario, simulated sea surface temperature is 4 °C higher with respect to contemporary conditions, leading to reduced mixing and nutrient supply at middle-subpolar latitudes. The seasonal phytoplankton bloom is reduced and occurs one month earlier, the flow of carbon to the microbial loop is enhanced, and phytoplanktonic stoichiometry is nutrient-depleted. Primary productivity is enhanced at subpolar latitudes, due to increased ice-free regions and possibly to temperature-related photosynthesis stimulation. This study highlights that natural climate variability may act alternatively to strengthen or to weaken the human-induced impacts, and that in the next decades it will be difficult to distinguish between internal and external climate forcing on North Pacific plankton groups. Highlights ► A plankton model with variable stoichiometry has been used in a coupled climate study. ► Natural climate variations modify North Pacific plankton biomass by 10–30% while a warming scenario decreases primary production up to 50%. ► DOC production and the microbial foodweb will be favored in a warmer North Pacific. ► Positive phases of natural fluctuations counteract the impacts of global warming. ► Natural and anthropogenic impacts are distinguishable only in the second part of the 21st century

    Multi-decadal trends in Southern Ocean eddy activity simulated by a high-resolution ocean model

    No full text
    We investigate the regional responses of eddy kinetic energy (EKE) to the atmospheric forcing trends between 1948 and 2007 with a global configuration of the NEMO-LIM2 ocean-sea ice model, where a two-way nesting technique is used to enhance the horizontal resolution to 1/12° between 30°S and 68°S. A companion experiment forced by a repeated annual cycle is used to remove model spurious drifts from the hindcast experiment, and to identify the variance of EKE of a stochastic nature. The model results show that the wind strengthening occurred in the past decades led to a multi-decadal increase in EKE of about 5 cm2 sec-2 decade-1 averaged over the whole Southern Ocean. The changes in EKE are however not spatially uniform, and two response regimes are identified. In the Pacific and Indian sectors, the model reproduces the temporal evolution of the satellite-observed EKE and shows a predictable response of EKE to wind changes. In the Atlantic sector, where the stochastic-to-total ratio of EKE variance is nearly 100%, EKE does not match satellite observations, and wind forcing has a weak influence on EKE variability and its multi-decadal trends. The model thus helps to identify those regions with an optimal signal-to-noise ratio needed to detect possible future changes in eddy activity

    Detection and Tracking of Dynamic Ocean Carbon Uptake Regimes Built Upon Spatial Target-Driver Relationships via Adaptive Hierarchical Clustering

    No full text
    Our research focuses on detecting and tracking ocean carbon regimes, which are crucial indicators for understanding the impacts of climate change on ocean carbon uptake. Geoscientific datasets in Earth System Sciences often contain local and distinct statistical distributions at a regional scale. This poses a significant challenge in applying conventional clustering algorithms for data analysis. Based on the observed limitations of prominent methods, in our study, we propose a framework that enhances well-established unsupervised machine-learning methods tailored to applications on geoscientific datasets. We define a carbon uptake regime as a region characterized by common relationships between the carbon uptake and its drivers, as simulated by a multi-annual hydrodynamic model simulation. As a first step, we compute multivariate linear regressions capturing local spatial relations between carbon dioxide uptake and its drivers to discover such regimes. This is followed by an agglomerative hierarchical clustering constructed upon the collection of regional multivariate linear regression models. To overcome the emerging limitations of a global cut for partitioning, which is inadequate to capture the local statistical distributions, we present a novel, straightforward and adaptive approach to detect and visualize ocean carbon uptake regimes in this work. This method relies on the distance-variance selection technique and detects multiple local cuts on the dendrogram by considering both the compactness and similarity of the clusters. Detecting meaningful and well-defined carbon uptake regimes is vital for their tracking over time. The tracking is performed through a simple yet effective approach where summary structures derived from the clusters are traced over time. Applied over longer time scales, this novel method will enable marine scientists to effectively monitor the impacts of climate change on the ocean carbon cycle mor
    corecore