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Abstract  

This PhD thesis addresses the topic of large-scale interactions between climate and 

marine biogeochemistry. To this end, centennial simulations are performed under 

present and projected future climate conditions with a coupled ocean-atmosphere model 

containing a complex marine biogeochemistry model. The role of marine 

biogeochemistry in the climate system is first investigated. Phytoplankton solar 

radiation absorption in the upper ocean enhances sea surface temperatures and upper 

ocean stratification. The associated increase in ocean latent heat losses raises 

atmospheric temperatures and water vapor. Atmospheric circulation is modified at 

tropical and extratropical latitudes with impacts on precipitation, incoming solar 

radiation, and ocean circulation which cause upper-ocean heat content to decrease at 

tropical latitudes and to increase at middle latitudes. Marine biogeochemistry is tightly 

related to physical climate variability, which may vary in response to internal natural 

dynamics or to external forcing such as anthropogenic carbon emissions. Wind changes 

associated with the North Atlantic Oscillation (NAO), the dominant mode of climate 

variability in the North Atlantic, affect ocean properties by means of momentum, heat, 

and freshwater fluxes. Changes in upper ocean temperature and mixing impact the 

spatial structure and seasonality of North Atlantic phytoplankton through light and 

nutrient limitations. These changes affect the capability of the North Atlantic Ocean of 

absorbing atmospheric CO2 and of fixing it inside sinking particulate organic matter. 

Low-frequency NAO phases determine a delayed response of ocean circulation, 

temperature and salinity, which in turn affects stratification and marine 

biogeochemistry. In 20th and 21st century simulations natural wind fluctuations in the 

North Pacific, related to the two dominant modes of atmospheric variability, affect the 

spatial structure and the magnitude of the phytoplankton spring bloom through changes 

in upper-ocean temperature and mixing. The impacts of human-induced emissions in the 

21st century are generally larger than natural climate fluctuations, with the 

phytoplankton spring bloom starting one month earlier than in the 20th century and with 

~50% lower magnitude. This PhD thesis advances the knowledge of bio-physical 

interactions within the global climate, highlighting the intrinsic coupling between 

physical climate and biosphere, and providing a framework on which future studies of 

Earth System change can be built on. 
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Chapter 1 

Introduction 

The Earth’s climate comprises a variety of physical and biospheric processes ultimately 

powered by the Sun energy (Peixoto and Oort, 1992). A vast range of physical, 

chemical, biological, and human processes interact simultaneously and at different 

spatio-temporal scales within and among the atmospheric, oceanic, and land 

components of the climate system. Earth system science is devoted to investigating the 

nature of these interactions and assessing their role on the mean state and temporal 

evolution of the Earth’s climate. 

Fig. 1-1 shows a schematic representation of Earth system components and interactions 

of relevance for this study. The Earth’s climate exhibits strong fluctuations in time both 

due to natural variability and to external forcings. Natural climate fluctuations (arrow 1) 

span multiple time scales - interannual, interdecadal, multidecadal - and arise from the 

atmosphere’s dynamics and from ocean-atmosphere interaction. Well known climate 

fluctuations are the El Niño-Southern Oscillation involving pressure and ocean 

temperature redistributions between the eastern and western tropical Pacific (Philander, 

1990), the Northern and Southern Annular Modes involving seesaws of atmospheric 

mass between polar and middle latitudes (Thomson and Wallace, 2000), and the Pacific 

North American teleconnection associated - among others - with fluctuations of the 

Aleutian Low strength (Wallace and Gutzler, 1981). Atmospheric oscillations affect 

ocean properties through heat, momentum, and freshwater exchanges (Visbeck et al., 

2003), and are hypothesized to be in turn influenced to some degree by oceanic 

temperature patterns (Czaja and Frankignoul, 2001).  

External forcing of climate variability (arrow 2) arises from any process capable of 

modifying the radiative balance of the Earth System. This occurs for instance through 

changes in solar activity, changes in the Earth’s orbital parameters (Hays, 1976), or 

through fossil fuel emissions by human activities (Forster et al., 2007). This latter 

process increases the atmospheric greenhouse gas concentrations and thus the fraction 

of longwave radiation re-emitted towards the Earth surface. A larger greenhouse gas 

concentration is thus expected to increase atmospheric temperatures which in turn 
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impact the ocean compartment, e.g. through changes in steric height and stratification 

(Bindoff et al., 2007; Meehl et al., 2007). 

 

Fig. 1-1: Schematic representation of Earth system components and interactions of relevance 

for this study.  

This PhD thesis focuses on the study of large-scale interactions between physical 

climate and marine biogeochemistry. Marine biogeochemistry is closely related to the 

physical processes occurring within the Earth System. Ocean-atmosphere dynamics and 

external forcing affect marine biogeochemistry through a variety of processes such as 

ocean mixing and circulation, sea ice coverage, and incoming solar radiation. More 

precisely, these processes modify environmental conditions relevant to the lower trophic 

levels of the marine ecosystems through changes in ocean temperature, nutrients, and 

solar radiation availability (Mann and Lazier, 1996; Longhurst, 2007). Natural climate 

fluctuations (arrow 1) and anthropogenic climate change (arrow 2) may therefore 

significantly impact the composition, spatial structure, and temporal evolution of the 

ocean biogeochemical compartment (Sarmiento and Gruber, 2006). 

The interaction between physical climate and marine biogeochemistry is however bi-

directional. Marine biogeochemical processes may in fact create feedbacks onto the 
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physical climate system (arrow 3), owing to their capability of modifying physical and 

chemical properties of their surrounding environment (Denman et al., 1996). For 

instance, phytoplankton absorbs CO2 and contributes to the sequestration of 

atmospheric CO2 (biological pump) and produces other radiatively-active chemical 

substances (Boyd and Doney, 2003). Another bio-physical feedback is the absorption of 

solar radiation by phytoplanktonic organisms which modifies the upper ocean radiative 

budget (Morel and Antoine, 1994).  

The understanding of the two-way interactions between physical climate and marine 

biogeochemistry is further complicated by the fact that these interactions are 

simultaneous, characterized by multiple scales, and possibly co-varying to some degree. 

It is therefore useful to analyze these interactions within coupled climate models, which 

interactively simulate the dynamical evolution of the ocean, atmosphere, sea ice, and 

marine biogeochemistry in an interactive way. Climate models are capable of internally 

generating natural climate variability and of reasonably simulating the major large-scale 

processes occurring within the Earth System. They are therefore valuable tools, to be 

used in combination with observational data sets, for investigating interactions between 

physical climate and marine biogeochemistry under present climate and future 

projections of increased greenhouse gases. 

In this PhD thesis I focus on three particular aspects of the vast range of bio-physical 

interactions occurring within the Earth System: 

1. The response of marine biogeochemistry to the North Atlantic Oscillation and 

to North Pacific climate variability (arrow 1).  

2. The combined impacts of natural climate and anthropogenic forcing on marine 

biogeochemistry in the North Pacific (arrows 1 and 2). 

3. The climate feedbacks of solar radiation absorption by phytoplankton (arrow 

3). 

These aspects are thought to be relevant for improving the scientific understanding of 

Earth System functioning and its temporal evolution. The interrelated, simultaneous, 

and bi-directional nature of the bio-physical processes requires a comprehensive 

approach considering the various aspects of this interaction as part of a unitary and 

coupled system. In this PhD thesis I have consequently used a coupled ocean-
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atmosphere model containing interactive marine biogeochemistry to investigate two-

way interactions between climate and marine biogeochemistry within the Earth System. 

The following topics will be addressed:  

• Chapter 2 describes the coupled model employed to investigate the main PhD 

questions, the model development performed within the PhD, and the experiments 

conducted in this work; subsequently, the model climatological outputs are be 

analyzed in comparison with available observations.  

• Chapter 3 analyzes the feedbacks exerted by ocean phytoplankton radiative heating 

on global climate. The investigations are carried out in the areas where the bio-

optical feedbacks have a larger effect on the physical climate, in order to better 

identify underlying mechanisms.  

• Chapter 4 investigates physical and biogeochemical ocean responses to the North 

Atlantic Oscillation. It focuses on analyzing the marine biogeochemical responses 

on interannual to decadal time scales and on identifying the driving processes.  

• Chapter 5 explores and compares the impacts of natural and anthropogenic climate 

change on marine biogeochemistry in 20th and 21st century simulations. 

• Chapter 6 summarizes the main findings and concludes on the main perspectives 

that this work opens. 
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Chapter 2 

Methods 

2.1 Coupled model description 

The fully coupled global models used in this study are two: the first one is a carbon 

cycle model containing ocean, atmosphere, sea ice, marine biogeochemistry, and land 

surface compartments (for a technical description see Fogli et al., 2009); the other one is 

identical to the first one except for not containing the land surface compartment. 

The atmosphere general circulation model is ECHAM5 (Roeckner et al., 2003), which 

numerically solves the primitive equations for the atmospheric general circulation on a 

sphere. The horizontal triangular truncation used is T31, corresponding to an 

approximate 3.75º horizontal grid spacing. In the vertical a flexible coordinate is used, 

enabling the ECHAM5 model to use either terrain-following sigma or hybrid 

coordinates, with a total of 19 vertical levels.  

The ocean general circulation model OPA 8.2 (Madec et al., 1998) solves primitive 

equations on the global curvilinear and tripolar ORCA2 grid (Madec and Imbard, 1996). 

The model has a horizontal resolution of 2º×2ºcosθ except for the tropical belt between 

20ºS and 20ºN, where grid spacing is reduced to 0.5°. The model has 31 unevenly 

spaced vertical levels with increasing resolution up to 10 m in the upper thermocline. 

Vertical eddy diffusion of momentum and tracers is parameterized according to a 1.5 

turbulent closure model based on a prognostic equation for the turbulent kinetic energy 

(Blanke and Delecluse, 1993). The mixed layer depth is then computed diagnostically as 

the depth at which density is 0.1 kg m
-3

 higher with respect to surface values. In case of 

vertical density instability, vertical diffusivity is artificially enhanced to 100 m
2 

sec
-1

 in 

order to parameterize convective adjustment. The horizontal diffusion of momentum is 

parameterized with a Laplacian operator and a 2-D spatially-varying kinematic viscosity 

coefficient set to 40000 m
2 

sec
-1 

poleward of 20°N and 20°S and in the western 

boundary regions, and gradually decreasing to 2000 m
2 

sec
-1

 in the equatorial region. 

The horizontal diffusion of tracers is computed by means of a harmonic operator along 

isopycnal surfaces with an eddy diffusivity coefficient equal to 2000 m
2 

sec
-1

. The 
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model implements an eddy-induced velocity parameterization (Gent and McWilliams, 

1990) with coefficient values depending on the growth rate of baroclinic instabilities 

and usually varying between 15 and 3000 m
2
 s

-1
. Ocean and atmosphere exchange of 

momentum, heat, and freshwater fluxes is provided once a day by means of the OASIS3 

coupler (Valcke et al., 2004). Heat and freshwater conservation are ensured by the 

OASIS3 coupler without the addition of flux corrections. However, since river runoff is 

climatologically prescribed, excess freshwater or salt is equally redistributed on the 

global ocean on a daily basis. 

The ocean model includes the thermodynamic-dynamic sea ice model LIM 

(Timmermann et al., 2005). Sensible heat storage and vertical heat conduction within 

snow and ice are determined by a three-layer model (one layer for snow and two layers 

for ice). Vertical and lateral changes of sea ice are obtained from prognostic energy 

budgets at the vertical boundaries of the snow-ice cover.  For the momentum balance, 

sea ice is considered as a two-dimensional continuum in its dynamical interaction with 

atmosphere and ocean.  

The ocean model contains the marine biogeochemistry model PELAGOS (Vichi et al., 

2007a) which is the global implementation of the Biogeochemical Flux Model (BFM, 

http://bfm.cmcc.it). A model assessment against observational datasets is presented in 

Vichi et al. (2007b) for a climatological simulation and in Vichi and Masina (2009) for 

an interannual simulation forced with observed atmospheric fluxes. The model includes 

a comprehensive set of marine biogeochemistry relations for major inorganic and 

organic compounds and for the lower trophic levels of the marine ecosystem. Three 

phytoplankton groups (diatoms, nano- and picophytoplankton), three zooplankton 

groups (nano-, micro- and mesozooplankton) and one bacterioplankton group are 

described according to their physiological requirements and feeding interactions. 

Diatoms are the largest phytoplankton group, having high nutrient requirements, 

elevated growth rates, and being grazed by mesozooplankton. In this model, diatoms are 

the dominant phytoplanktonic group in the Equatorial Pacific and at subpolar and mid-

latitudes, whereas the smaller-sized nano- and picophytoplankton dominate subtropical 

and tropical domains. Nutrient uptake is parameterized following a Droop kinetics 

(Vichi et al., 2007a) which allows for multi-nutrient limitation and variable internally-

regulated nutrient ratios. Chlorophyll synthesis is down-regulated when the rate of light 

absorption exceeds the utilization of photons for carbon fixation (Geider et al., 1997). 



7 

Living groups excrete, in different quantities, dissolved and particulate organic carbon, 

which bacterioplankton remineralizes into dissolved inorganic compounds. Particulate 

organic carbon, mainly produced by the largest phyto- and zooplankton, is 

parameterized as sinking through the water column with a constant speed of 5 m day
-1

.  

Solar radiation in the climate model is the sum of visible and infrared wavelengths, 

absorbed by the ocean according to the Paulson and Simpson (1977) double exponential 

formulation:  

( ) ( ) ( )[ ]zkzk VISIR eReRyxIzyxI −+= 1,,, 0 ,   (2-1) 

where z is the vertical coordinate oriented upwards between the bottom depth where z = 

–H and the surface where z = 0, I is irradiance at depth z, I0 is the spatially-varying 

incoming solar radiation at the ocean surface, R the partitioning between infrared (58%) 

and visible (42%) wavelengths, and kIR and kVIS the infrared and visible attenuation 

coefficients typical of clear open ocean waters (Jerlov, 1968). Whereas infrared 

radiation is totally absorbed in the first model layer, visible radiation may reach ~100 m 

depth (corresponding to an attenuation depth for shortwave radiation equal to 23 m). 

When ocean biogeochemistry is present, the ability of visible radiation of penetrating at 

depth is dependent also on chlorophyll pigments (and to a lesser extent on detrital 

matter) which strongly absorb in the short-wavelength. The coefficient kVIS is then 

computed at each depth z as the sum of the constant seawater absorption coefficient kw 

(set to 0.043 m
-1

, i.e. the inverse of the attenuation depth) and of the biological 

attenuation coefficient kbio (Vichi et al., 2007a) integrated down to depth z:  

∫+=
0

')'(
1

)(
z

biowVIS dzzk
z

kzk    (2-2) 

)()()( zRczPczk Rpbio +=     (2-3) 

In Eq. (2-3) P and R are the chlorophyll and detrital matter concentrations at each depth 

z, and cp and cR their respective specific absorption coefficients (0.03 m
2 

mg
-1

 for 

chlorophyll and 10
-4

 m
2 

mg
-1

 for detritus).  

Radiation absorption by seawater and biological matter causes local radiative heating in 

the ocean according to the following formula: 
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z

I

Ct

T

P ∂

∂
=

∂

∂

ρ

1
 ,     (2-4) 

where ∂T/∂t is the temperature variation in time, ρ is ocean density, and CP the ocean 

heat capacity (4×10
3
 J K

-1
 kg

-1
). The radiative heating term in Eq. (2-4) is added to the 

ocean temperature trend equation aside heat advection and diffusion. 

In the version of the coupled climate model containing land surface, the land and 

vegetation model SILVA (Alessandri, 2006) is used to simulate soil hydrology and 

thermodynamics, snow, and vegetation processes relevant to climate. The model 

computes land surface characteristics such as albedo, roughness length, conductance, 

and evapo-transpiration as a function of the soil water content and vegetation state. The 

addition of a land and vegetation component to the atmosphere-ocean-sea ice-marine 

biogeochemistry coupled model allows for a closure of the global carbon cycle. 

2.2 Model development 

As part of the PhD thesis, a full description of the dissolved inorganic carbon (DIC) 

dynamics was incorporated inside PELAGOS in order to adequately simulate the ocean 

components of the carbon cycle. In the ocean, inorganic carbon exists in three different 

forms: free carbon dioxide [ ] [ ] [ ]( )3222 COHCOCO
aq

+= , bicarbonate ion )( 3

−
HCO , and 

carbonate ion )( 2

3

−
CO . The carbonate species reach the following equilibrium: 

+−+− +→←+→←+ HCOHHCOOHCO
KK

22

3322
21    (2-5) 

defined by the equilibrium constants K1 and K2 for the first and second reaction 

respectively (Zeebe and Wolf-Gladrow, 2001). The carbonate system in seawater is 

described in terms of 7 chemical species, i.e., free carbon dioxide, bicarbonate ion, 

carbonate ion, carbon dioxide partial pressure in seawater )( 2pCO , hydrogen ion 

concentration ]))([log( 10

+−= HpH , total carbon concentration (DIC), and total 

alkalinity (TA), which are governed by the following relations: 

[ ] [ ]
[ ]2

3
1

CO

HHCO
K

+− ⋅
=       (2-6) 
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[ ] [ ]
[ ]−

+− ⋅
=

3

2

3
2

HCO

HCO
K      (2-7) 

[ ] [ ] [ ]−− ++= 2

332 COHCOCODIC      (2-8) 

[ ]

0

2
2

K

CO
pCO =       (2-9) 

[ ] [ ] ( )[ ] [ ] [ ] [ ] ...22 3

4

2

44

2

33 ++++++= −−−−−−
POHPOOHOHBCOHCOTA     

[ ] [ ] [ ] [ ] [ ]4344 POHHFHSOHOSiH Fs −−−−+ −+− .    (2-10) 

The species appearing in Eq. (2-10) are expressed in terms of their equilibrium 

constants and of their elemental concentrations. Total alkalinity is therefore computed 

as a function of: 

[ ]( )sitftptstbtKKKKKKKKKKDICHfTA fssipppbw ,,,,,,,,,,,,,,,, 32121

+=  (2-11) 

where K1 and K2 are the equilibrium constants for carbonic acid and bicarbonate ion 

calculated as a function of temperature and salinity according to Roy et al. (1993); K0 is 

the Henry’s constant which regulates CO2 solubility in seawater and it is calculated 

according to Weiss (1974) as a function of temperature; Kw is the ion product of 

seawater calculated according to Millero (1995) using composite data recommended 

Dickson and Goyet (1994); Kb is the dissociation constant for boric acid ( )3)(OHB  

calculated according to Millero (1995); K1p, K2p,and K3p are the dissociation constants 

for phosphoric acid ( )43POH , dihydrogen phosphate ion ( )−
42 POH  and hydrogen 

phosphate ion ( )−2

4HPO  respectively, calculated according to Millero (1995); Ksi is the 

dissociation constant for silicic acid ( )4)(OHSi  computed according to Millero (1995);  

Ks is the dissociation constant for bisulphate ion ( )−
4HSO  calculated according to 

Dickson (1990); Kf is the dissociation constant for hydrogen fluoride ( )HF  calculated 

according to Dickson and Riley (1979) converting to total “hydrogen” scale as in 

Dickson and Goyet (1994). The species bt is the total boron concentration 

( )[ ] ( )[ ]( )43 OHBOHB + calculated according to Uppstrom (1974), st is the total sulphate 

concentration [ ] [ ]( )−− + 2

44 SOHSO  calculated according to Morris and Riley (1966), and ft 

is the total fluoride concentration [ ] [ ]( )−+ FHF  calculated according to Riley (1965). 

The species pt, i.e. the total phosphorus concentration 
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[ ] [ ] [ ] [ ]( ),3

4

2

44243

−−− +++ POHPOPOHPOH and sit, i.e. the total silica concentration 

( )[ ] [ ]( )−+ 434 OSiHOHSi , are model state variables. The fore mentioned calculations 

have been performed following the US Department of Energy (DOE) “Handbook of 

Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in 

Seawater” (Dickson and Goyet, 1994), with the application of the total “hydrogen” scale 

for all computations. A pressure correction on each of the equilibrium constants is 

applied following Millero (1995) and Zeebe and Wolf-Gladrow (2001). 

This system contains 7 unknown variables ( )2

2

332 ,,,,,, pCOHCOHCOCOTADIC
+−−  

and is defined by 5 equations (Eqs. 2-6 to 2-10). The system is therefore determined 

when two of the seven variables are known: in this case these are total inorganic carbon 

(DIC), varying as a function of physical and biogeochemical processes, and alkalinity 

(TA), varying as a function of physical processes only, as biogeochemical processes 

leading to alkalinity changes (i.e. calcium carbonate production and dissolution, and 

riverine inputs of alkalinity) are not implemented in the model. The local equilibrium 

carbonate chemistry is solved according to the simplified method proposed by Follows 

et al. (2006) for the computation of [ ]+H  from which other variables 

( )223

2

3 ,,, pCOCOHCOCO
−−  may then be calculated. The pH value is calculated as 

+− H10log . 

The difference between atmospheric and surface ocean CO2 partial pressure drives a 

CO2 flux between the ocean and the atmosphere. The air to sea CO2 transfer over the 

ocean is parameterized according to Wanninkhof (1992):  

( ) ( ) ( )( )
seaairavseaair

pCOpCOkKCOflux 2202 −⋅⋅=
−

   (2-12) 

where pCO2(air) and pCO2(sea) are the air and sea CO2 partial pressures at the atmosphere-

ocean interface, K0 is the fore mentioned solubility coefficient for CO2 in seawater, and 

kav is the gas transfer coefficient for steady winds (Wanninkhof, 1992) computed as: 

5.0

2

660
3.0

−









⋅⋅=

Sc
ukav     (2-13) 

where u is the wind speed and Sc is the Schmidt number, defined as the kinematic 

viscosity of water divided by the diffusion coefficient of the gas, and estimated 

according to (Wanninkhof, 1992): 
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 32 043219.06276.362.1251.2073 TTTSc ⋅−⋅+⋅−= .   (2-14) 

The implementation of carbonate chemistry for the closure of the carbon cycle adds 2 

dynamically transported variables (total alkalinity and total dissolved inorganic carbon) 

and 5 diagnostic variables for the carbonate speciation (aqueous CO2, bicarbonate and 

carbonate concentrations, pCO2, pH and ocean-atmosphere CO2 flux). 

2.2 Experiment set up 

The coupled model described in Section 2.1 is used to produce a number of simulations 

which are shown schematically in Fig. 2-1. A coupled simulation containing the 

physical components only of the coupled model, i.e. atmosphere (ECHAM5), ocean 

(OPA 8.2) and sea ice (LIM), is named A for “abiotic”. Experiment A is initialized with 

climatological temperature and salinity data from the World Ocean Atlas 1998 

(Antonov et al., 1998; Boyer et al., 1998) and is integrated for 400 years. Another 

coupled simulation is performed with the same physical core as experiment A with the 

addition of the marine biogeochemistry model PELAGOS and is named B for “biotic”. 

The B experiment is initialized with the physics of the year 100 of the A experiment and 

integrated further for 300 years. Both experiments A and B are conducted under 

constant greenhouse gas atmospheric concentrations, i.e. CO2, CH4, N20, and CFC; in 

particular, CO2 concentrations are equal to 348 ppm, a value typical of the 1980s (Fig. 

2-2). Marine biogeochemistry in experiment B is initialized as follows: macronutrients, 

dissolved inorganic carbon and alkalinity are prescribed from World Ocean Atlas 2001 

climatologies (Conkright et al., 2002), dissolved iron concentration is initialized as 

homogeneous zonal bands based on sparse data collected by Gregg et al. (2003) and the 

remaining variables are set to uniform concentrations, with chlorophyll concentrations 

computed as a constant ratio of phytoplankton carbon. During the model integration, 

atmospheric iron deposition is taken into account by applying climatological model data 

from Tegen and Fung (1994) and assuming a dissolution fraction of 1%. 



12 

 

Figure 2-1: Experiments analyzed in this study: in experiments A and B atmospheric CO2 

levels are set to 348 ppm; in the pre-industrial experiments greenhouse gases are set to the 

climatological value for the year 1860; in the “XX century” experiment greenhouse gases are 

those observed for the period 1860-1999; in the “XXI century” experiment greenhouse gases are 

prescribed according to the A1B scenario. Model components, used in different combinations 

among the simulations, are ECHAM5 (atmosphere), OPA 8.2 (ocean), LIM (sea ice), 

PELAGOS (marine biogeochemistry), SILVA (land and vegetation).  

A set of centennial simulations have been performed within the framework of the EU 

Project ENSEMBLES (http://ensembles-eu.metoffice.com/). In particular, 

ENSEMBLES designed a carbon cycle concerted experiment, in which atmospheric 

greenhouse gases (hereafter GHG) concentrations are used to drive the carbon cycle 

model instead of GHG emissions, following the simulation strategy proposed by 
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Hibbard et al. (2007). A number of pre-industrial simulations were performed under 

climatological GHGs (CO2, CH4, N2O, and CFC), ozone, sulfate, and aerosol 

concentrations relative to the year 1860, which for atmospheric CO2 is equal to 286 

ppm. A pre-industrial simulation performed with the physical core of the coupled model 

was initialized following the method by Stouffer et al. (2004) from historical oceanic 

observations representative of current temperature and salinity distributions (Levitus et 

al., 1998). Another pre-industrial simulation containing the interactive terrestrial 

vegetation model SILVA was initialized from the year 120 of the physics-only pre-

industrial experiment and integrated for 200 years. This simulation was used to initialize 

the physics and terrestrial vegetation of another pre-industrial experiment containing the 

interactive marine biogeochemistry model PELAGOS, where marine biogeochemistry 

was initialized identically as in the B experiment described above.  

In order for the ocean and terrestrial biosphere carbon pools to equilibrate with 

preindustrial atmospheric CO2 concentrations, an artificial acceleration method was 

performed, similarly to Alessandri (2006); specifically for the ocean, the global ocean-

atmosphere CO2 fluxes drive an artificially enhanced ocean outgassing where the excess 

carbon is removed homogeneously from the oceanic inorganic carbon pool. After the 

oceanic carbon pools have reached equilibrium with atmospheric GHGs, the simulation 

is continued for another 50 years and used to initialize a historical 1860-1999 century 

simulation containing all model components, and forced with observed atmospheric 

concentrations of atmospheric GHGs, sulphates, ozone, and aerosols (made available 

within the ENSEMBLES multi-model experiment). The year 1999 of the XX century is 

used to initialize a XXI century projected climate simulation performed with all 

components of the coupled model. Time-varying GHGs, sulphate, ozone, and aerosol 

concentrations are prescribed employing the Intergovernmental Panel on Climate 

Change (IPCC) Special Report on Emissions Scenarios (SRES) “business-as-usual” 

A1B scenario (Nakicenovic and Swart, 2000). The time evolution of atmospheric CO2 

concentrations during 1860-1999 and for the A1B scenario is shown in Figure 2-2.  
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Fig. 2-2:  Time evolution of prescribed atmospheric CO2 concentrations in the A and B 

simulations, i.e. 348 ppm(black), for the 20
th
 century simulation, i.e. those observed during the 

years 1860-1999 (blue), and for 21
st
 century simulation according to the A1B scenario (red).  

 



15 

2.3 Model climatology and biases 

Model climatologies are analyzed over the last 150 years of the B experiment and over 

the last 30 years of the XX century simulation, and compared with observational data 

sets. Fig. 2-3 shows in colors the annual SST bias with respect to 1950-2002 Hadley 

SST (Rayner et al., 2003) and the climatology of each experiment in contours. In the B 

experiment SST exhibits negative biases in the central equatorial Pacific (~2°C), in the 

northwestern North Atlantic (~6°C), in the northern Pacific subtropical gyre (~2°C) and 

in the Southern Ocean between 30°-60°S (2-3°C), and positive biases in the eastern 

tropical basins (~4°C) and in the North Pacific at around 45°N (~5°C). The last 30 years 

of the XX century exhibit similar spatial patterns even though the ocean surface is 

significantly colder. This counterintuitive result is due to the fact that sulfate aerosol 

concentration, exerting a negative feedback on surface temperatures, is higher in the last 

30 years of the XX century than in the B experiment.  

 

Fig. 2-3: Colors: Annual SST model bias (°C) with respect to Hadley SST, contours: model 

climatology; (a) B experiment, (b) last 30 years of the XX century. 

Annual precipitation simulated in the B and XX century experiments is compared with 

Climate Prediction Center Merged Analysis of Precipitation (CMAP) estimates for 

1979-2002 (Xie and Arkin, 1996) in Fig. 2-4. The model is capable of capturing the 

main features of the precipitation field even though precipitation in the Tropics is 

slightly overestimated and affected by the presence of a double Intertropical 

Convergence Zone (hereafter ITCZ), and over the North Atlantic and North Pacific 

storm tracks tend to be shifted more poleward than observed.  
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Similarly to other coarse resolution coupled simulations (Meehl et al., 2007), the SST 

and precipitation biases shown in Figs. 2-3 and 2-4 originate from issues regarding 

model physics, air-sea coupling and grid resolution. In particular, in the eastern tropical 

Pacific and Atlantic basins the misrepresentation of low stratus clouds and of deep 

convection processes could account for some of the SST and precipitation biases (Lin, 

2007), whereas overly strong easterlies, simplified formulations of air-sea momentum 

fluxes (Jungclaus et al., 2006; Guilyardi et al., 2009) and reduced tropical instability 

wave activity are the likely cause for cold bias in the central equatorial Pacific. The 

North Atlantic negative SST bias is mostly related to the displaced pathways (Fig. 2-5) 

of the Gulf Stream and the North Atlantic Current (Reverdin et al., 2003) which reduce 

heat transport into the subpolar gyre. 

 

Fig. 2-4: Simulated annual precipitation (mm day
-1

) in (a) B experiment, (b) last 30 years of the 

XX century (c) CMAP estimates. 
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Fig. 2-5: B experiment annual surface currents (m sec
-2

). Currents having a magnitude 

exceeding 0.65 m sec
-1 

are scaled of a factor 2 for better visualization (red arrows). 

Annual wind stress biases with respect to ERA-40 reanalysis (Uppala et al., 2005) are 

shown in Fig. 2-6 for B and XX century experiments. In both the experiments, easterly 

trade winds in the northern subtropical Pacific are overestimated (up to 0.1 N m
-2

), and 

mid-latitude westerlies are poleward-shifted in the Northern Pacific and equatorward-

shifted in the Southern Ocean. Wind biases are possibly originating from inaccurate 

meridional SST gradients which affect vertical shears of zonal winds through the 

thermal wind relation (Holton, 1992). Annual latent heat fluxes are compared with 

NCEP reanalysis (Kalnay et al., 1996), and their biases shown in Fig. 2-7 for B and XX 

century experiments together with their climatological values, where positive values 

indicate ocean heat gains. Latent heat losses tend to be overestimated where SST values 

are overestimated (e.g. subtropical gyres, Kuroshio extension region in the western 

North Pacific), whereas they tend to be underestimated where SST values are lower than 

observed (e.g. subpolar North Atlantic, equatorial Pacific).  
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Fig. 2-6: Simulated annual wind stress bias (N m
-2

) with respect to ERA-40 reanalysis (colors 

indicate magnitude) and model climatology (contours); (top) B experiment, (bottom) last 30 

years of the XX century. 
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Fig. 2-7: Simulated annual latent heat flux bias (W m
-2

) with respect to NCEP reanalysis 

(colors) and model climatology (contours); (a) B experiment, (b) last 30 years of the XX 

century. 

Fig. 2-8: sea ice edge, diagnosed as 1% sea ice cover for B experiment (red), last 30 years of the 

XX century experiment (green), NCEP reanalysis (blue) in January-March (JFM, left) and July-

September (JAS, right). 

The northern hemisphere sea ice edge, diagnosed as 1% sea ice cover, in B and XX 

century simulations is shown in Fig. 2-8 together with the NCEP reanalysis data 

(Kalnay et al., 1996) for winter (JFM) and summer (JAS) months. In the B experiment 

winter sea ice is generally overestimated in the Labrador Sea and in the western North 

Pacific whereas it is rather well simulated in summer. In the XX century sea ice is 
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highly overestimated in both the North Atlantic and North Pacific basins in relation to 

negative SST biases in the northern hemisphere (Fig. 2-3b). 

  

 

  

Fig. 2-9: Mixed layer depth (m) plotted in logarithmic scale in January-March (JFM, left) and 

July-September (JAS, right) for (a,b) B experiment, (c,d) XX century experiment, and (e,f) de 

Boyer-Montégut et al. (2004) observational estimates.  

Mixed layer depth (MLD) in B and XX century experiments is shown in logarithmic 

scale in Fig. 2-9 for January-March (JFM) and July-September (JAS) and compared 

with de Boyer-Montégut et al. (2004) estimates. It is to be remarked that MLD in the 

model is computed diagnostically as the depth at which ocean density is 0.1 kg m
-3

 

higher than the surface, whereas in de Boyer Montégut et al. (2004) it is diagnosed as 

the depth at which temperature is 0.2 °C lower than the surface. As discussed by de 

Boyer Montégut et al. (2004), the temperature criterium is more suitable because of 
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higher spatial coverage of observational data and because it detects boundaries between 

density-compensated water masses. However MLD values calculated with two different 

methods (de Boyer Montégut et al., 2004) yield sufficiently similar results for the 

purpose of the present comparison. When compared with observational estimates, both 

the B and the XX century simulations show overestimation of JFM MLD in the Atlantic 

Nordic Seas and in the subpolar North Pacific, and underestimation in the Labrador Sea, 

the latter caused by overestimated sea ice (Fig. 2-8). In the Southern Ocean MLD is 

generally underestimated south of 60°S in both JFM (austral summer) and JAS (austral 

winter), and overestimated equatorward of 60°S in JAS (austral winter). The 

equatorward shift of MLD maximum in the Southern Ocean is possibly related to the 

incorrect equatorward displacement of westerly winds (Fig. 2-6). 

Annual chlorophyll concentrations averaged over the euphotic layer depth in B and XX 

century experiments are shown in logarithmic scale in Fig. 2-10 and compared with 

SeaWiFS satellite estimates (McClain, 2009) and with World Ocean Atlas (Conkright et 

al., 2002) data averaged over the first 100 m depth. The main features of the chlorophyll 

field are correctly represented by the model simulation, in terms both of magnitude and 

of spatial structure, i.e. chlorophyll values are higher in subpolar regions (up to 0.5 mg 

m
-3 

in the North Pacific and Southern Ocean, up to 0.2 mg m
-3 

in the North Atlantic) and 

in the Tropics (up to 0.3 mg m
-3

 in the equatorial Pacific), and are lower at subtropical 

latitudes. However it may also be seen that chlorophyll values are underestimated at 

subtropical latitudes in both hemispheres, whereas they are overestimated south of 40°S 

in the Southern Ocean. In the North Atlantic Ocean chlorophyll values tend to be 

underestimated, even though the seasonal maximum is correctly captured in terms of 

both timing and amplitude (Fig. 2-11). 

 

 



22 

Fig. 2-10: Annual chlorophyll concentration in the euphotic layer (mg m
-3

) plotted in 

logarithmic for the (a) B experiment, (b) last 30 years of the XX century experiment, (c) 

SeaWiFS satellite estimates and (d) World Ocean Atlas observational data.  

The reasons for the biases in the chlorophyll mean state arise from inaccuracies in both 

physical and biogeochemical models. For instance, the positive bias in the Southern 

Ocean is related to an inadequate representation of the mixed layer seasonal cycle, 

which is too deep in the winter months and too shallow in the subsequent summer 

months (Fig. 2-9). Moreover the equatorward displacement of the MLD maximum 

impacts the spatial distribution of the chlorophyll maximum as well. The chlorophyll 

underestimation in the subpolar North Atlantic Ocean is probably related to a number of 

reasons: (1) winter chlorophyll values are lower-than-observed because of the 

overestimated depth of the winter mixed layer (Fig. 2-11) which exerts a light limitation 

on phytoplankton growth; (2) the lower-than-observed summer values are related to 

underestimated nutrient concentrations (not shown) which are largely consumed and 

exported from the euphotic layer depth during the spring months; (3) in the course of 

the whole 300-year model integration, surface nutrient and chlorophyll values exhibit a 

systematic decrease, possibly caused by an overly strong export of nutrients from the 

surface layers into deeper ocean layers, where they are likely conveyed by the 

meridional overturning circulation towards south. This behavior may be seen in Fig. 2-
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12a showing a time series of B experiment chlorophyll concentration integrated in the 

euphotic layer and spatially averaged north of 35°N, where it may be seen that 

chlorophyll values tend to stabilize in the last 100 years of the simulation. 

  

Fig. 2-11 Observed (blue, dashed line) and simulated (red, full line) climatological seasonal 

cycles, computed over the subpolar North Atlantic. Left: mixed layer depth (MLD) in m, where 

the observed values are from de Boyer Montégut et al. (2004). Right: chlorophyll concentration 

(Ch-SAT) in mg m
-3

, where observed values are SeaWiFS satellite estimates (McClain, 2009), 

and simulated values are vertically averaged until the 3
rd

 optical depth.  

It needs to be stressed that the goodness of a biogeochemical model lies in its capability 

of correctly simulating not only mean bulk biogeochemical properties but also the rates 

at which organic matter is processed within the food web, which influence upper ocean 

carbon transformation processes and ultimately carbon sequestration in deeper ocean 

layers. As shown by Vichi and Masina (2009), the PELAGOS model used in this study 

has skill at simulating net primary production over the global ocean, when compared 

with satellite-derived estimates and an independent data set of in situ observations in the 

equatorial Pacific. 

For the analysis of chlorophyll interannual and decadal variability in the B experiment, 

characterized by constant atmospheric CO2 concentrations, it is convenient to have 

chlorophyll anomaly time series detrended from systematic tendencies unrelated to 

climate variability. A second order polynomial fit of the last 200 years of the 

chlorophyll time series is therefore computed at each grid point and its spatial average 

north of 35°N shown Fig. 2-12a (red line). A fit with an exponential function was also 
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attempted but it did not give satisfactory results in all parts of the basin. Evidently, 

various time scales are involved in the adjustment process to initial conditions and thus 

one cannot assume a simple exponential model of chlorophyll temporal evolution in all 

grid points. The obtained polynomial coefficients are used to detrend the time series of 

B experiment chlorophyll concentration at each grid point. From Fig. 2-12b it may be 

seen that after the detrending operation over the last 200 years of the time series the 

chlorophyll anomalies oscillate around zero with fluctuations which are then related to 

climatic variability. 

 

 

Fig. 2-12: Time series of annual chlorophyll (CHL) concentration integrated in the euphotic 

layer (mg m
-2

) and averaged north of 35°N. (a) B experiment CHL time series (black) and 

second order polynomial fit (red) over the last 200 years of simulation, (b) last 200 years of the 

B experiment CHL anomalies after detrending. 

For the analysis of the marine biogeochemical response to increased CO2 concentrations 

in the XXI century simulations, a polynomial fit of the time series cannot be performed 

as for experiment B. In fact the changes in surface chlorophyll are likely to be mostly 

forced by external climate trends. In Fig. 2-13 globally averaged time series of annual 

chlorophyll concentration values are shown for the pre-industrial simulation (where 

atmospheric gases and aerosols are climatologically set to the year 1860 values), for the 

historical simulation (where atmospheric gases and aerosols are those measured during 

the 1860-1999 period), and for the XXI century projection (where atmospheric gases 

and aerosols are those estimated by the A1B scenario). It has to be remembered that 
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marine biogeochemistry was initialized (identically as for the B experiment) at the 

beginning of the pre-industrial simulation. It may be seen that chlorophyll exhibits a 

large decrease during the first 100 years simulation, as similarly seen and discussed for 

the B experiment in the northern hemisphere (Fig. 2-12). Afterwards chlorophyll 

exhibits a tendency towards stabilization (as in the B experiment) before showing 

another large drop in the XXI century projection. It is very likely that the first 

chlorophyll drop in the pre-industrial era, i.e. performed under constant CO2 

concentrations, is due to dynamics internal to the coupled model, whereas the second 

drop in the XXI century, i.e. after chlorophyll has roughly stabilized, is due to external 

climate forcing. 

 

Fig. 2-13 Time series of annual chlorophyll concentration integrated over the euphotic layer 

depth and averaged over the global ocean (mg m
-2

) for the pre-industrial simulation (blue), 

historical simulation from 1860 to 1999 (green), and A1B scenario for the XXI century (red).  

Finally, a comparison between the simulated surface CO2 partial pressure (hereafter 

pCO2) in the last 30 years of the XX century and observed pCO2 data obtained from the 

Lamont Doherty Earth Observatory (LDEO) dataset (Takahashi et al., 2009a) covering 

the period 1970-2005 is shown in Fig. 2-14. Observed and simulated data are binned 
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onto a regular 2x2 degrees grid and annually averaged. The model reproduces the 

pattern of high pCO2 in the large scale upwelling of the Pacific Ocean, related to 

entrainment to the surface of carbon-rich subsurface waters. It does not have skill 

however to reproduce the regions of high pCO2 in the Indian Ocean because of weaker 

and shallower than observed upwelling, indicating that this area acts as sinks and not as 

source in the XX century simulation. 

 

 

2-14 Maps of 2x2 degrees binned data of surface pCO2 (µatm) from (a) LDEO dataset 

(Takahashi et al., 2009), (b) annual climatology of the last 30 years of the XX century 

simulation. From Vichi et al., 2010 (in preparation). 
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Chapter 3 

Feedbacks of biological radiative heating in a 

coupled climate model 

Summary This study addresses the mechanisms by which upper ocean 

phytoplankton may generate feedbacks on the global climate by means of solar radiation 

absorption during photosynthetic reactions. Phytoplankton radiation absorption gives 

rise to a local radiative heating pattern capable of propagating into the coupled and 

dynamical climate system and of generating feedbacks onto oceanic and atmospheric 

properties. Here a coupled model containing interactive marine biogeochemistry is used 

to perform a 300-year simulation which is compared with a physics-only simulation, 

thus enabling the analysis of the effects of the addition of biological radiative heating on 

the physical climate. It is found that in the dynamically coupled climate system the 

heating perturbation induced by biology propagates within the climate system and 

generates feedbacks on virtually all its components. A general increase of sea surface 

temperatures around 0.5°-1°C is accompanied by an enhancement of latent heat losses 

to the atmosphere which determine increases in atmospheric temperatures and water 

vapor content up to 6%. The equatorial maximum in biological heating causes an 

intensification of the Hadley circulation which acts as a teleconnection mechanism 

affecting cloudiness and solar radiation patterns from tropical to subtropical latitudes. 

Changes in temperature meridional gradients at extratropical latitudes modify the 

vertical shear of zonal winds and give rise to anticyclonic anomalies in the mid-latitude 

atmospheric circulation. Modified atmospheric circulation drives 5-10% modifications 

in the upper ocean circulation and related heat transports. In response to changes in 

incoming solar radiation and in ocean circulation, upper-ocean heat content decreases at 

tropical latitudes and increases at middle latitudes. The biologically-induced 

modifications in the physical climate might interact with the other sources of internal 

and external climate variability and might need to be kept into consideration in climate 

impact studies. 
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3.1 Introduction 

The upper ocean contains a variety of living and dead particles which absorb, scatter 

and reflect incoming solar radiation (Morel and Antoine, 1994). Among these are 

chlorophyll pigments which are internal constituents of phytoplanktonic organisms used 

to absorb visible radiation for photosynthetic reactions. This process interacts with the 

vertical distribution of shortwave radiation through the water column and thus with the 

upper ocean heat budget. Bio-optical feedbacks are relevant in the context of climate 

research as they are virtually ubiquitous and intimately intertwined with time- and 

space-varying physical forcing factors. 

Most climate models use a constant attenuation scale for visible radiation of ~20 m 

depth which comes from observational estimates of open ocean water clarity (Jerlov, 

1968; Paulson and Simpson, 1977). This assumption however does not consider the 

large variations of bio-optical properties that can be found throughout the ocean on 

various temporal and spatial scales. For instance, local variations in temperature linked 

to biological radiative heating in the tropical Pacific were observed to strongly respond 

to ocean variability associated with El Niño Southern Oscillation (Strutton and Chavez, 

2004); using remotely sensed data for the Arabian Sea, Sathyendranath et al. (1991) find 

that the distribution of phytoplankton, which is mainly governed by upwelling 

seasonality, exerts a controlling influence on the seasonal evolution of sea surface 

temperature.  

Whereas the local effect of chlorophyll radiation absorption may be measured 

instrumentally, its full-scale effects on the climate system may only be addressed in 

modeling studies. A key region is the tropical Pacific, characterized by high chlorophyll 

concentrations and by pronounced ocean-atmosphere coupling. In forced ocean 

configurations biological heating was found to affect equatorial sea surface 

temperatures (Nakamoto et al., 2001; Loeptien et al., 2009) and it was suggested that 

this might improve some of the systematic errors found in coupled models (Murtugudde 

et al., 2002). The sea surface temperature (SST) response to biology is strongly 

dependent on dynamical feedbacks involving changes in mixed layer depth (hereafter 

MLD) and currents. It is found that changes in equatorial and off-equatorial MLD are 

connected to modifications of meridional ocean transports (Sweeney et al., 2005; 

Manizza et al., 2008; Loeptien et al., 2009) and zonal current velocities through 

geostrophic adjustment (Nakamoto et al., 2001; Lengaigne et al., 2007). In addition to 
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the local effect induced by biology on the Equator, non-local processes may also be 

important in affecting equatorial SSTs. For instance, the meridional advection of off-

equatorial heat anomalies induced by biology is found to be relevant in affecting 

equatorial temperatures and their seasonal cycle (Sweeney et al., 2005; Lengaigne et al., 

2007; Gnanadesikan and Anderson, 2009). 

In the dynamically coupled ocean-atmosphere system, we also expect local biological 

heating anomalies to propagate into the climate system and generate feedbacks onto its 

components which are not easily predictable from the initial perturbation alone. In an 

atmospheric model forced by biologically-perturbed sea surface temperatures (Shell et 

al., 2003) and in coupled model experiments (Wetzel et al., 2006; Lengaigne et al., 

2007; Gnanadesikan and Anderson, 2009) ocean biota generates changes in surface 

winds, in the Walker circulation, and in tropical precipitation patterns. The role of 

coupled ocean-atmosphere processes is however still not clear. On one hand the 

atmospheric response to biological heating is found to enhance temperature anomalies 

through wind stress feedbacks (Anderson et al., 2007; Lengaigne et al., 2007), on the 

other hand atmospheric feedbacks are found to weaken the biological perturbation 

through turbulent heat fluxes (Oschlies, 2004; Park et al., 2005). Finally, changes in the 

tropical ocean-atmosphere mean state may modify El Niño Southern Oscillation 

variability: hybrid and coupled models have been used to assess the role of ocean biota 

on tropical variability in response to changes in mean seasonal cycles (Marzeion et al., 

2005; Lengaigne et al., 2007), air-sea coupling (Timmermann and Jin, 2002; Anderson 

et al., 2009), and thermocline depths (Wetzel et al. 2006). 

A number of studies have focused on how biology interacts with the temperate and high 

latitude climate. Forced and coupled models containing interactive marine 

biogeochemistry were used to analyze biologically induced changes in ocean 

temperature, stratification, sea ice and ocean circulation (Oschlies, 2004; Wetzel et al., 

2006; Manizza et al., 2008; Lengaigne et al., 2009). They find that the seasonal cycle of 

the MLD is amplified because of increased turbulent heat fluxes and changes in the 

ocean temperature vertical structure produced by biology. Spring biological heating is 

found to enhance sea ice melting and to produce freshwater anomalies which slightly 

impact the large-scale meridional overturning circulation (Lengaigne et al., 2009). 

Teleconnection processes with tropical latitudes arise in relation to Hadley circulation 

changes (Shell et al., 2003) which modify cloudiness and solar heat flux patterns at 

subtropical and middle latitudes (Wetzel et al., 2006). In the Southern Ocean, sea 



30 

surface temperatures anomalies induced by biology feed back on the wind stress curl 

field and thus play an indirect effect on ocean meridional overturning and water mass 

formation (Gnanadesikan and Anderson, 2009).  

The understanding of how the global climate system as a whole responds to the bio-

optical perturbation still remains a challenge. Even though the local effect of biological 

radiative heating has been observationally estimated by means of combined satellite and 

ocean measurements (e.g. Sathyendranath et al., 1991; Strutton and Chavez, 2004), the 

estimation of how this local effect may affect global climate is not possible in an 

observational framework as a “control” condition where biology is absent is not 

available. Yet the study of bio-optical feedbacks on the global climate is relevant in 

climate research as they may interact with the response of the Earth System to 

anthropogenic climate change. 

The strategy in this study is thus to use a coupled ocean-atmosphere model containing 

interactive marine biogeochemistry which is capable of simulating the major 

interactions and feedbacks among different climate components on a global scale. The 

use of imposed chlorophyll structures would not be suitable for this study as it would 

not allow for internally consistent bio-physical feedbacks. A 300-year simulation 

containing full coupling with biology is compared with a physics-only control 

experiment with the purpose of analyzing bio-feedbacks on the adjusted state of a 

coupled climate system.  

Scientific questions: 

• Which  regional responses arise in response to biological radiative heating? 

• Which are the oceanic and atmospheric mechanisms driving these responses? 

• Do these mechanisms act as positive or negative feedbacks on global temperatures? 

This chapter is organized as follows: section 3.2 shows the biologically-induced 

changes in the ocean-atmosphere mean state. The discussion of dynamical mechanisms 

giving rise to these changes in the Tropics and Extratropics is deferred to Section 3.3. 

Section 3.4 briefly describes the impact of biological radiative heating on Tropical and 

Extratropical interannual variability. Concluding remarks are given in Section 3.5. 
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3.2 Changes in the ocean and atmosphere mean state 

To assess the influence of interactive marine biogeochemistry on global climate, two 

300-year simulations performed under constant CO2 atmospheric levels (described in 

Section 2.3) are compared. The first is a physics-only control simulation and is named A 

for “Abiotic”; the second contains full interaction with marine biogeochemistry and is 

named B for “Biotic”. The last 150 years of each simulation are used for the analysis of 

all variables except heat trend terms which are available only for 100 years of 

simulation.  

In experiment A ocean attenuation depth for visible radiation is held constant to 23 m, 

whereas in experiment B it varies spatially and temporally as a function of chlorophyll 

and detrital matter concentrations. In Fig. 3-1a we show B minus A attenuation depths 

calculated following equations 2-2 and 2-3 over the euphotic depth. A decrease in 

attenuation depths of 3 to 6 m occurs in correspondence of high chlorophyll structures, 

indicating an enhanced upper ocean heat trapping. Biological radiative heating the B 

experiment is computed the difference between total and “pure” seawater radiative 

heating. Areas of enhanced local biological radiative heating (Fig. 3-1b) occur in boreal 

and austral subpolar latitudes and in the equatorial Pacific, with annual mean values of 

0.4-0.6 °C month
-1

 at the surface. We remark that radiative heating is only one of the 

components of the upper ocean heat budget alongside advective, diffusive and ocean-

atmosphere heat fluxes: these other terms compensate for excess radiative heating in 

order to maintain the climate system in dynamical equilibrium. Biological radiative 

heating is the only difference between the two experiments and its effect on oceanic and 

atmospheric properties will now be described. The discussion of local and remote 

mechanisms leading to these changes will be deferred to Section 3.3. 

The addition of biology to the coupled model overall warms the ocean surface (Fig. 3-

2a). In the eastern tropical Pacific and at middle and subpolar latitudes SST in 

experiment B is ~0.4°C higher than in A, with peaks of more than 1°C in some 

localized regions of the North Pacific and North Atlantic Oceans. SST differences are 

instead close to zero or negative in some limited areas at high latitudes and in the 

tropical Pacific Ocean. Following SST changes, the ocean is in general more stratified 

in experiment B with respect to A (Fig. 3-2b), especially at middle and subpolar 

latitudes and in the central equatorial Pacific, where percentual changes in mixed layer 

depth (hereafter MLD) may reach 20%. Heat content integrated between the surface and 
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300 m depth (Fig. 3-2c) is higher by ~5×10
8
J m

-2 
at subtropical and middle latitudes, 

whereas it tends to be lower (~3×10
8
 J m

-2
) at tropical latitudes (20°S-20°N) and 

poleward of 50°S and 50°N. Heat content changes arise from the complex interplay of 

oceanic and atmospheric mechanisms, as discussed in the next section. B minus A 

differences in SST, heat content and MLD are statistically significant at 99% on large 

portions of the global ocean (Fig. 3-3), where statistical significance is determined by 

means of a Student’s t-test. 

 

 

Fig. 3-1: (top) B minus A annual mean differences of attenuation depth (m); (bottom) B 

experiment biological heating at the surface (°C month
-1

). 
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Fig. 3-2: B minus A annual mean differences of (a) sea surface temperature (SST) in °C, (b) 

mixed layer depth (MLD), indicated as the percentual change with respect to the A experiment, 

(c) 0-300 m integrated heat content (HC) in J m
-2

, (d) precipitation (PREC), in mm day
-1

, (e) 

solar radiation at the ocean surface (W m
-2

) and (f) ocean-atmosphere latent heat fluxes (W m
-2

), 

where positive heat fluxes indicate an ocean heat gain. 

Feedbacks on atmospheric variables and on air-sea heat fluxes are also detected. 

Precipitation (Fig. 3-2d) increases by more than 0.3 mm day
-1

 between 10°S-10°N in the 

Pacific, whereas it generally decreases between 15°-30° in both hemispheres. Changes 
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appear in general to respond to local SST changes and the Intertropical Convergence 

Zone (ITCZ) is not significantly displaced. Incoming solar radiation at the ocean surface 

(Fig. 3-2e) is overall lower at tropical latitudes (except on the equatorial Pacific) 

whereas it is higher at subtropical and middle latitudes. Changes in incoming shortwave 

radiation in experiment B are connected to the vertical integral of cloud cover (not 

shown), which is up to 2% higher in the tropical belt (except on the equatorial Pacific) 

and down to 2% lower at subtropical and middle latitudes. Changes in cloudiness are 

related to atmospheric circulation changes, as it will be discussed in the next section. 

Ocean-atmosphere latent heat fluxes (Fig. 3-2f) - defined positive downwards – in 

general decrease in B, indicating that an ocean with biology looses more heat to the 

atmosphere through evaporative fluxes. Some limited areas of positive B minus A latent 

fluxes occur however in the tropical Pacific, in northwestern Atlantic Ocean and in the 

Southern Ocean. In most areas, solar and non-solar heat flux changes range between ±5 

W m
-2

. 

 

Fig. 3-3 Statistical significance at a 99% confidence interval of B minus A annual mean 

differences of (a) sea surface temperature (SST), (b) mixed layer depth (MLD), (c) 0-300 m 

integrated heat content (HC), (d) sea level pressure (SLP). 

The presence of biology induces anomalies in surface atmospheric circulation through 

changes in wind velocities (Fig. 3-4, arrows). Wind patterns appear to respond to sea 

level pressure changes (Fig. 3-5), whose relation with biological heating will be 

discussed in Section 3.3. Sea level pressure changes are in general statistically not 
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significant at extratropical latitudes and in the eastern parts of the tropical basins (Fig. 

3-3d), where interannual fluctuations exceed changes due to biology. At extratropical 

latitudes, increased sea level pressure is associated with negative wind stress curl 

anomalies (Fig. 3-4, colors) in the northern hemisphere (positive in the southern 

hemisphere), indicating increased anticyclonic vorticity of surface winds. Wind speed 

changes are around 0.5 m sec
-1

, i.e. 5-10% with respect to the A experiment. At tropical 

latitudes wind changes in B with respect to A are especially high in the Pacific Ocean 

(differences up to 1 m sec
-1

). Sea level pressure decreases in the eastern Pacific and 

increases in the central part of the basin, causing westerly wind anomalies to arise east 

of 130°W. In the central-western Pacific sea level pressure in B is relatively lower on 

the equator with respect to subtropical latitudes, causing increased wind convergence on 

the Equator. Easterlies are then weakened in the eastern part of the basin, whereas in the 

central-western part of the basin they increase their magnitude and their convergence on 

the Equator. 

 

Fig. 3-4: B minus A annual differences of wind velocities in m sec
-1

 at 1000 mbar (arrows) and 

associated wind stress curl in 1×10
-8

 N m
-3

 (colors).   

Changes in wind patterns may in turn affect ocean circulation through changes in wind 

stress curl (Fig. 3-4, colors). At middle latitudes (between 40°-60°), negative wind 

stress curl changes of 1-2×10
-8 

N m
-3

 in the northern hemisphere (positive in the 
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southern hemisphere) correspond to anomalous downward Ekman velocities of ~1 cm 

day
-1

. Poleward of 60°S, wind stress curl differences are mostly negative and their value 

of ~1×10
-8

 N m
-3 

corresponds to an upward Ekman velocity of ~0.5 cm day
-1

. In the 

tropical Pacific wind stress curl differences are positive (negative) equatorward of 10°N 

(10°S) with values up to 1×10
-8

 N m
-3

,
 
corresponding to anomalous upward Ekman 

velocities exceeding 5 cm day
-1

. 

 

Fig. 3-5: B minus A annual differences of sea level pressure (hPa) and A annual climatology in 

contours. Shading intervals are 0.05 hPa and contour intervals 5 hPa. 

Surface ocean circulation (Fig. 3-6) is modified as a result of thermal and wind 

anomalies produced by biological radiative heating. Largest changes (red arrows) occur 

in the central-western tropical Pacific, where the westward South Equatorial Current 

and the meridional divergence from the Equator are intensified (induced currents > 0.45 

cm sec
-1

). Anticyclonic circulation in the North Atlantic and North Pacific basins is 

enhanced, with current velocity changes between 0.1-0.45 cm sec
-1

 (blue arrows). In the 

Southern Ocean equatorward surface anomalies (0.1-0.45 cm sec
-1

)
 
occur throughout the 

basin between 40°-60°S. 

The vertical structure of oceanic and atmospheric response to biological heating will 

now be addressed. Fig. 3-7 shows meridional sections of B minus A zonally averaged 

atmospheric and oceanic temperatures and atmospheric water vapor, expressed as 
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percentual changes with respect to A. Since the response to biology is rather 

homogeneous along longitude, and more variable along latitude (Fig. 3-2), the zonal 

average is representative of the investigated signals. Atmospheric temperature 

differences (Fig. 3-7a) are mostly positive, with values exceeding 0.5°C at tropical 

latitudes (between 200 and 400 hPa) and at middle latitudes (for pressures > 400 hPa); 

negative values occur instead at high latitudes for pressures <200 hPa. Zonally averaged 

ocean temperature differences (Fig. 3-7d) may reach ±0.5 °C in the first 300 m depth, 

whereas they are minimal below (not shown). At middle latitudes (40°-50° in both 

hemispheres) positive temperature anomalies occur throughout the first 300 m depth, 

with highest values in the first 100 m depth (~0.4°C). At tropical latitudes ocean 

temperature differences are positive (but lower than 0.1°C) until 50 m depth, whereas 

negative values of -0.2°C are found between 50 and 200 m depth in two circular 

structures centered on 10°S and 10°N. Water vapor percentual changes in B with 

respect to A are positive throughout the atmosphere (especially at tropical latitudes) 

because of the overall enhancement of evaporative fluxes (Fig. 3-2f). 

The ocean-atmosphere thermal coupling occurs by means of surface heat fluxes, which 

contribute to the redistribution of the biological heat perturbation between ocean and 

atmosphere. Zonally averaged B minus A surface heat fluxes, distinguished in incoming 

shortwave radiation, outgoing longwave radiation, sensible and latent heat fluxes, are 

shown in Fig. 3-7c, where positive fluxes indicate an ocean heat gain and negative 

values an ocean heat loss. Incoming solar radiation in B is lower at tropical latitudes and 

higher at middle and high latitudes. Longwave radiation differences are mostly positive, 

except at high latitudes where they are slightly negative. Latent heat flux differences are 

negative at all latitudes, with higher losses at around 40°N and 40°S. Sensible heat flux 

differences are smaller with respect to other fluxes and are mostly positive, indicating 

that in the adjusted state of the simulation the ocean surface is slightly cooler than the 

overlying atmosphere. On global average the net surface heat flux is close to zero, 

indicating that the atmosphere and upper-ocean have adjusted to biology reaching a new 

thermal equilibrium. In this adjusted state, latent heat fluxes are the main contributor to 

redistributing the biological heat perturbation to the atmosphere, whereas sensible heat 

fluxes transfer back to the ocean a small part of the exchanged heat. Changes in solar 

and longwave radiation, also importantly involved in the redistribution of heat between 
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the ocean and atmosphere compartments, are mainly related to modifications in the 

atmospheric circulation, as it will be discussed in the following Section. 
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Fig. 3-6 B minus A annual differences of surface currents (cm sec
-1

). Note different scaling for velocity differences >0.45 cm sec
-1

 (depicted in red), velocities 

included between 0.15 and 0.45 cm sec
-1

 (depicted in blue), and lower than 0.15 cm sec
-1

 (depicted in black). 
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Fig. 3-7 Zonal averages of (a) B minus A (colors) and A (contours) atmospheric temperature 

(°C) plotted as a function of atmospheric pressure, (b) B minus A (colors, %) and A (contours, 

kg/kg×10
-3

) water vapor plotted as function of atmospheric pressure, (c)  B minus A surface 

heat fluxes (W m
-2

) distinguished between solar (red), latent (blue), sensible (green), and 

longwave (grey), where positive values indicate an ocean heat gain, (d) B minus A (colors) and 

A (contours) ocean temperature (°C) plotted until 300 m depth. 
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3.3 Discussion of mechanisms 

In Section 3.2 it was shown that the addition of a biological radiative heating 

perturbation of ~0.4°C month
-1

 into the coupled climate model significantly affects most 

components of the climate system, including ocean temperature and circulation, ocean-

atmosphere heat fluxes, atmospheric temperatures and water vapor, and atmospheric 

circulation and associated precipitation and solar radiation patterns. Results have also 

highlighted a meridional ocean heat content redistribution between tropical latitudes 

which cool, and subtropical and middle latitudes which warm. These results raise 

several questions, for instance: (1) which processes compensate for the ~0.4°C month
-1 

biological heating to produce a new equilibrium point in which SST is on average 

~0.4°C higher? (2) Why does ocean heat content decrease in the tropical Pacific even 

though chlorophyll values are high? (3) Through which mechanisms does biology 

interact with atmospheric circulation at tropical and extratropical latitudes? These and 

other issues will be analyzed in the following two sections separately for the Tropics 

and Extratropics as they involve different mechanisms.    

3.3.1  Dynamical feedbacks in the Tropics 

To investigate tropical responses to ocean biota, we focus on the tropical Pacific where 

biology and biologically-induced changes on the physics are more pronounced. 

However many of the discussed arguments also hold for the tropical Atlantic Ocean. In 

the tropical Pacific, B minus A surface radiative heating differences (Fig. 3-8a) are 

positive (0.6 °C month
-1

) on the Equator and negative in the surrounding off-equatorial 

belts. This modified radiative heating pattern, caused by the sum of biological radiative 

heating (Fig. 3-1b) and changes in incoming shortwave radiation (Fig. 3-2e), is 

importantly involved in generating tropical Pacific SST differences. 

The feedback of ocean biota on physics is different between eastern and western 

tropical Pacific. In the eastern tropical Pacific positive SST anomalies generate direct 

thermally-driven ascending motions in the atmosphere associated with decreased sea 

level pressure (Fig. 3-5). The resulting weakening of the west-east sea level pressure 

zonal gradient induces westerly wind anomalies in the eastern Pacific (Fig. 3-4) through 

Bjerknes feedback. Lower tropospheric easterly winds and upper troposphere westerly 

winds decrease by ~0.5 m sec
-1

 (Fig. 3-9), indicating an overall weakening of the 
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eastern branch of the Walker circulation, i.e. the zonal atmospheric cell driven by east-

west pressure differences (Bjerknes, 1969). 

 

 

Fig. 3-8: Annual means of B minus A surface heating terms (°C month
-1

) due to (a) radiative 

processes and (c) advective processes (sum of zonal, meridional and vertical components). Note 

the different color scales. 

 

Fig. 3-9 Zonal section in the Equatorial Pacific of atmospheric zonal velocities (m sec
-1

) 

averaged between 5°S-5°N and plotted as a function of atmospheric pressure (hPa). Colors: B 

minus A, contours: A. Positive values correspond to eastward motion. 
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In the central and western Pacific, large-scale changes in the sea level pressure field 

(Fig. 3-5) create relatively lower sea level pressures on the equator with respect to 

subtropical latitudes, causing trade winds to strengthen and to enhance their converge 

on the Equator. Consistently, in the western Pacific the Walker circulation is enhanced 

(Fig. 3-9). The Hadley circulation, i.e. the meridional atmospheric cell connecting 

tropical ascending motion to subtropical descending motion, is also strengthened in 

response to concentrated heating in the equatorial belt (Hou and Lindzen ,1992), related 

to the chlorophyll maximum. Wind convergence increases on the equator, anomalous 

upward atmospheric velocities of ~1 hPa day
-1

 occur over the tropical Pacific (Fig. 3-

10a) and poleward wind anomalies between 0.1-0.2 m sec
-1

 are detected in the upper 

troposphere (Fig. 3-10b). Increased atmospheric upward motion over the Tropics is 

associated with the advection of heat anomalies in the upper troposphere (Fig. 3-7a) and 

with enhanced tropical precipitation (Fig. 3-2d), as also found by Wetzel et al., (2006), 

and cloudiness (not shown). This process, which causes a decrease in incoming 

shortwave radiation at the ocean surface (Fig. 3-2e), exerts a negative feedback on 

tropical SSTs. Exception to this pattern is a tight band on the equatorial Pacific, where 

increased upwelling and advective cooling (which will be discussed further on) have 

opposite effects on cloudiness and incoming shortwave radiation. 

Latent heat fluxes (Fig. 3-2f) are importantly involved in damping biologically-induced 

SST anomalies and are certainly a major agent limiting SST differences between the 

two experiments. This important feedback would not be captured by ocean-only models, 

which are in fact often characterized by more pronounced biologically-induced SST 

perturbations (e.g. Nakamoto et al., 2001, Murtugudde et al., 2002). In addition, 

increased evaporative fluxes cause atmospheric humidity (Fig. 3-7b) and cloudiness to 

increase globally, leading to a decrease in the outgoing longwave radiation (Fig. 3-7c) 

by means of cloud and water vapor feedbacks (Held and Soden, 2000). This process 

exerts a positive climatic feedback on SSTs (Forster et al., 2007). 
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Fig. 3-10: Meridional sections in the central Pacific of B minus A (a) vertical atmospheric 

velocity (hPa day
-1

) and (b) meridional atmospheric velocity (m sec
-1

). Quantities are zonally 

averaged between 145°E and 100°W.  Positive values indicate downward (a) and northward (b) 

motion.  

After having analyzed tropical atmospheric feedbacks, the oceanic responses will now 

be investigated. The changes in the wind patterns in the central equatorial Pacific (Fig. 

3-4) play a relevant role in producing circulation anomalies (Fig. 3-6). Increased 

easterlies accelerate the South Equatorial Current and increase cyclonic wind stress curl 

anomalies which increase equatorial upwelling (Fig. 3-11a). Geostrophic processes may 

also be at play in modifying equatorial Pacific circulation. Zonal sections of ocean 

temperature differences, latitudinally averaged between 2°S-2°N in the tropical Pacific 

(Fig. 3-12a), show a subsurface cooling of up to 0.5°C close to the thermocline depth 

(Fig. 3-12a, lines). This is related to radiative cooling induced by chlorophyll structures, 

(Fig. 3-12b) which cause the water column to absorb more radiation in the upper ocean 

and to have less radiation in layers underneath. As a result the thermocline shoals by 

~10 m in the central-eastern Pacific and increases its east-west gradient. The subsurface 
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meridional convergence of off-equatorial waters therefore increases (Fig. 3-11b) 

through geostrophic adjustment. At the Equator, where the Coriolis force vanishes, the 

increased fluid convergence in part rises to the surface to sustain the enhanced 

divergence, and in part accelerates eastward inside the Equatorial Undercurrent 

(Philander, 1990). This is evident from Fig. 3-12c, where zonal velocities in the upper 

thermocline exhibit an eastward increase (up to 6 cm sec
-1

) all along the Equator, and a 

slight westward increase below. This pattern corresponds to a slight upward shift and a 

~1 Sv enhancement (not shown) of the Equatorial Undercurrent. 

Fig. 3-11: Equatorial Pacific map of B minus A (a) ocean vertical velocity (cm day
-1

) averaged 

over the first 50 m depth, where positive values indicate upward motion, and (b) meridional 

ocean velocity (cm sec
-1

) at 50 m depth, where positive values indicate northward motion. 

We note that non-local atmospheric feedbacks (which add cyclonic vorticity to the 

ocean) and local biological processes (which enhance the thermocline east-west tilt) 

both act to increase shallow meridional overturning and upwelling in the central 

equatorial Pacific. From Fig. 3-8b it may be seen that surface advection contributes to 

cooling the ocean surface of the eastern equatorial Pacific by more than 0.2°C month
-1

, 

with the dominant term being vertical advection (not shown). Ocean dynamics exerts a 

negative feedback on equatorial upper ocean temperatures, which therefore do not 

increase as much as one might expect from biological heating alone. 
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Shallow tropical mixing (Fig. 2-8a,b) reduces the ventilation of subsurface layers: 

surface radiative warming then has the possibility of being damped by means of ocean 

evaporative heat losses, whereas subsurface chlorophyll-induced cold anomalies have 

less chances of being dissipated. Thus in the Tropics the effect of absorbing solar 

radiation closer to the sea surface is a net cooling of the water column, as also seen by 

Oschlies (2004) for the North Atlantic. This mechanism, in association with decreased 

incoming shortwave radiation and with increased equatorial upwelling, is responsible 

for the overall 0-300 m heat content decrease in the tropical Pacific (and to a lesser 

extent in the tropical Atlantic). 

Increased precipitation (Fig. 3-2d), stronger upwelling (Fig. 3-11a) and enhanced 

vertical temperature gradients (Fig. 3-12a) are all processes which concur in enhancing 

the water column vertical density gradient and thus stratification (Fig. 3-2b). In previous 

studies using forced ocean configurations, increased equatorial stratification gave rise to 

(1) enhanced poleward volume transports in the mixed layer (Sweeney et al., 2005; 

Loeptien et al., 2009) and (2) an increased mixed layer depth meridional gradient which 

enhances zonal currents through geostrophy (Nakamoto et al., 2001). Also in this study 

these processes likely act to make equatorial circulation in the central equatorial Pacific 

stronger. 

Considering the increase in upwelling occurring in the central equatorial Pacific, we 

would expect to see a decrease in SST rather than a slight increase. Evidently, surface 

biological heating dominates on counteracting dynamical feedbacks in setting the 

equatorial SST response to biology. Counteracting feedbacks on equatorial SSTs 

triggered by biology were also found in other coupled model studies. For instance, 

Lengaigne et al. (2007) find that increased SSTs give rise to decreased easterlies and 

weaker equatorial upwelling: this positive feedback on equatorial SSTs is however 

counteracted by meridional advection of biologically-induced negative subsurface 

anomalies. Anderson et al. (2007) also find that off-equatorial chlorophyll values play a 

relevant role in supplying cool subsurface waters to the equatorial Pacific: however in 

their coupled model this advective effect dominates over surface radiative heating, 

causing SST to decrease. Equatorial Pacific SST changes therefore appear to be very 

sensitive to atmospheric and oceanic feedbacks triggered by biology, which in turn 

depend on the model used and on the experimental design. This indicates that in the 
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tropical Pacific the response to ocean biology might not be entirely robust among 

coupled models. 

Fig. 3-12 Zonal sections in the equatorial Pacific (2°S-2N average) of (a) B minus A ocean 

temperatures in °C (colors) and thermocline depth (full line: A experiment, dashed line: B 

experiment), (b) B minus A radiative heating differences in °C month
-1

 (colors) and chlorophyll 

concentration in mg m
-3

 (contours), (c) B minus A (colors) and A (contours) zonal current 

velocities in cm sec
-1

. Note the different depth scale of panel (b). 
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3.3.2 Dynamical feedbacks in the Extratropics 

Biological radiative heating (Fig. 3-1b) and increased shortwave radiation (Fig. 3-2e) 

concur in enhancing surface radiative heating at extratropical latitudes (Fig. 3-8a). The 

increase in radiative heating due to biology generates warm SST anomalies, in 

agreement with other studies using ocean-only (Oschlies, 2004; Manizza et al., 2005) 

and coupled model configurations (Wetzel et al., 2006). The biological perturbation is 

partly dissipated by increased evaporative heat losses to the atmosphere (Fig. 3-2f), 

which then exert a negative feedback on SST anomalies. 

B minus A SST differences have a maximum increase at ~45° and an overall slight 

decrease poleward of 50° in both hemispheres (Figs. 3-2a and 3-7d). Meridional 

temperature gradients therefore decrease between subtropical and middle latitudes, and 

increase between middle and high latitudes. The vertical shear of zonal winds adjusts by 

means of the thermal wind relation by decreasing between ~20-40° and increasing 

between ~40°-60° in both hemispheres (Fig. 3-13). When integrated throughout the 

atmospheric column, these wind shear changes lead to anomalous anticyclonic 

structures centered at ~50° in both hemispheres. Moreover near the troposphere-

stratosphere boundary meridional temperature gradients are also enhanced (Fig. 3-7a) 

resulting in enhanced westerlies above that level by the thermal wind balance. 

Anticyclonic atmospheric circulation corresponds to increased mid-latitude atmospheric 

descending motion (Fig. 3-10a) and positive sea level pressure differences (Fig. 3-5). 

The Hadley cell amplification (Fig. 3-10) is responsible for subtropical and middle 

latitude increases in descending motion, which cause clouds to decrease and incoming 

shortwave radiation to increase, thus exerting a positive feedback on subtropical and 

mid-latitude SSTs. This atmospheric teleconnection between tropical and extratropical 

latitudes, referred to as “atmospheric bridge” (Liu and Alexander, 2007), appears to be 

effective in transferring the biological perturbation generated in the Tropics to 

extratropical latitudes. Increased middle latitude SSTs, in connection to intensified 

Hadley circulation, were also found by Shell et al. (2003) and Wetzel et al. (2006). 
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Fig. 3-13 Atmospheric zonal velocities (m sec
-1

) zonally averaged over the globe. Colors: B 

minus A differences; contours: A experiment.  

In the North Atlantic and North Pacific, anticyclonic wind anomalies (Fig. 3-4) drive 

anticyclonic ocean circulation anomalies (Fig. 3-14, arrows) which are geostrophically 

adjusted to sea surface height changes (Fig. 3-14, colors). It has to be remarked that the 

model does not simulate steric sea surface height changes, which are therefore solely 

due to changes in ocean divergence. The induced currents resulting from the anomalous 

circulation are responsible for an increase in the Gulf Stream and North Atlantic Current 

in the North Atlantic, and of the Kuroshio and North Pacific Current in the North 

Pacific. Signatures of these circulation changes may be seen in the advective heating 

structures found between 40°-50°N which reinforce the warm SST anomaly, and in the 

advective cooling structures between 50°-65°N (Fig. 3-8b) which counteract the warm 

SST anomaly. In the Southern Ocean, increased westerly winds at ~60°S (Figs. 3-4 and 

3-13b) give rise to positive wind stress curl anomalies (Fig. 3-4, colors). Surface ocean 

currents respond to wind stress curl changes by increasing northward ocean transport 

between 40-60°S (Fig. 3-6) which causes advective cooling throughout the Southern 

Ocean (Fig. 3-8b). This process counteracts surface radiative warming due to ocean 

biology (Fig. 3-8a). Gnanadesikan and Anderson (2009) also find that temperature 

changes induced by ocean biota in the Southern Ocean are connected to ocean 

meridional overturning changes through variations in wind stress curl. 

Hemispheric asymmetry in the SST response to ocean biota may be seen, with boreal 

latitudes warming more than austral latitudes despite lower chlorophyll concentrations. 

This result might be due to the ability of northern hemisphere deep mixed layer depths 

to store biological radiative heating anomalies in subsurface layers more efficiently than 

in the southern hemisphere, where instead vigorous current systems tend to cancel the 
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biological heat perturbation. Moreover the different geometry and latitudinal extents of 

the Southern Ocean with respect to the North Atlantic and North Pacific basins may also 

give rise to different dynamical feedbacks. 

 

 

Fig. 3-14 B minus A surface current velocities in cm sec
-1

 (arrows) and sea surface height in cm 

(colors) in the (a) North Atlantic and (b) North Pacific. Note the different color and arrow 

scales between the two panels. 

Northern and southern hemispheres however share a common increase in stratification 

at middle and subpolar latitudes (Fig. 3-2b), related to increased vertical temperature 

gradients (Fig. 3-7d) which stabilize the water column. The zonally averaged seasonal 

evolution of MLD in B and its percentual change with respect to A is shown in Fig. 3-



51 

15. Strong seasonal variability is evident, with deepest mixed layers (MLD) occurring in 

each hemisphere’s winter.  Between 50-60°N and 60-70°S we find an increase in 

stratification in summer and a decrease in winter, implying an amplification of the MLD 

seasonal cycle.  This behavior was also detected at subpolar latitudes by Oschlies (2004) 

and Manizza et al (2008), who give the following  interpretation: in summer, when the 

mixed layer depth is shallower than the light penetration depth, enhanced biological 

heat trapping leads to increased SST and shallower MLD. However increased SSTs 

enhance ocean buoyancy losses which accumulate over the annual cycle and eventually 

result in a deepening of the winter mixed layer. Moreover it is possible that during 

winter, deep mixing entrains to the surface cold anomalies developed during the 

preceding months in association with subsurface biological radiative cooling. This 

destabilizes the upper water column and further increases the MLD. We remark that the 

seasonal amplification of the MLD is accompanied by a slight delay of the spring 

stratification onset in both hemispheres.  

  

Fig. 3-15: Mean seasonal cycles of zonally averaged (left) mixed later depth in the B 

experiment and (right) B minus A mixed later depth. 
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3.4 Changes in variability 

After having analyzed the changes in the physical mean state induced by biological 

radiative heating, here the feedbacks on ocean-atmosphere variability are briefly 

addressed. In Fig. 3-16 diagnostics for the eastern tropical Pacific (Niño3 region: 5°S-

5°N; 150°W-90°W) are shown. SST in the Niño3 region is slightly higher in the B 

experiment but the amplitude of its seasonal cycle is not modified (Fig. 3-16a). Time 

series of SST anomalies in the Niño3 region (Niño3 index) show a tendency in the B 

experiment towards an increased number of high index phases (positive and negative) at 

the expenses of lower amplitude events (Fig. 3-16b). Consistently, standard deviation of 

the Niño3 index increases from 1.0 in the A experiment to 1.2 in the B experiment. 

Increased standard deviation of the Niño3 index in B cannot be explained by reduced 

seasonal cycle, as found in previous studies (Marzeion et al., 2005; Lengaigne et al., 

2007). It could be however related to shoaling of the thermocline in B which enhances 

the sensitivity of the upper ocean layer to coupled ocean-atmosphere fluxes. The power 

density spectrum of the Niño3 index shows a peak between at a 30-40 month period (i.e. 

2-3 years) and no significant shift appears to occur between the two experiments.  

At extratropical latitudes, leading modes of atmospheric variability are extrapolated by 

means of Empirical Orthogonal Function (EOF) analysis computed on winter sea level 

pressure (hereafter SLP) anomalies. The first mode of SLP variability in the North 

Atlantic sector, the North Atlantic Oscillation (NAO, Hurrell et al., 2003), and the 

second mode of winter SLP variability in the North Pacific sector, the North Pacific 

Oscillation (NPO, Rogers, 1981) both involve meridional redistributions of atmospheric 

mass between subtropical and subpolar latitudes. The variance explained by the NAO 

increases from 53% in A to 60% in B, and the variance explained by the NPO increases 

from 22% in A to 27% in B. The first mode of SLP variability in the North Pacific 

sector, involving fluctuations of the Aleutian Low strength with coherent SLP changes 

over the whole North Pacific, decreases from 52% in A to 44% in B. An interpretation 

to these results could be the bio-optical feedbacks, because of their ability of modifying 

meridional temperature and SLP gradients (Figs. 3-2a, 3-6, 3-7a), are effective in 

enhancing the variance of those modes involving fluctuations of subtropical-subpolar 

SLP differences, i.e. the NAO and the NPO. However it has to be noted that the 

variance explained by the described modes of variability is biased towards 
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overestimated values (as found also in other coupled models, e.g. Miller et al., 2006). 

Therefore these interpretations have to be taken with care. 

 

Fig 3.16: Niño3 region  (5°S-5°N; 150°W-90°W) SST diagnostics for experiments A (blue 

lines) and B (red lines): (a) SST seasonal cycle, (b) histogram of Niño3 index, (c) power density 

spectrum of Niño3 index.  

a b 

c 
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3.5 Conclusions 

Global bio-optical feedbacks arising from the absorption of solar radiation by ocean 

phytoplankton were investigated in a state-of-the-art fully coupled model containing 

interactive marine biogeochemistry. This modeling framework allowed bio-optical 

feedbacks to be fully represented at the global scale and to be at all times internally 

consistent marine biogeochemical structures. A 300-year experiment was performed 

with the full version of the coupled model and compared with a control simulation 

characterized by a constant attenuation depth for visible radiation over the entire ocean 

domain. It is found that in the dynamically coupled climate system the heating 

perturbation induced by biology propagates within the climate system and generates 

feedbacks around 5-10% on virtually all its components. Biological radiative heating 

raises sea surface temperature (SST) of about 0.5°-1°C, and triggers various intrinsically 

coupled mechanisms within the climate system:  

1. Increased ocean latent heat losses raise atmospheric temperatures and water vapor. 

Implication: Increased atmospheric water vapor exerts a positive feedback onto 

global temperatures because of its capability of absorbing longwave radiation. This 

may suggest that marine biogeochemistry contributes to some extent to the Earth’s 

greenhouse gas effect.  

2. The equatorial Pacific maximum in biological heating causes an intensification of 

the Hadley circulation which acts as a teleconnection mechanism affecting 

cloudiness and solar radiation patterns from tropical to subtropical latitudes. 

Implication: Changes in solar radiation exert a negative feedback on SST at tropical 

latitudes, and a positive feedback at Extratropical latitudes. 

3. Changes in SST meridional gradients at extratropical latitudes modify the vertical 

shear of zonal winds and give rise to anticyclonic anomalies in the mid-latitude 

atmospheric circulation, thus modifying ocean circulation. Related ocean heat 

transport modifications locally affect SSTs. 

4. Increased wind convergence onto the Equator induces cyclonic wind stress curl 

anomalies which drive near-surface upwelling. Implication: increased upwelling 

exerts a negative feedback onto equatorial SSTs. 
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5. At subpolar latitudes, biological radiative heating interacts with seasonal mixing 

and heat fluxes by generating an amplification of the mixed layer depth seasonal 

cycle.  

The response of the climate system to biological heating by phytoplanktonic organisms 

resembles in many ways that to anthropogenic carbon emissions as simulated in climate 

projections for the XXI century (Meehl et al., 2007), even though with lower 

magnitudes. Increased atmospheric water vapor, upper-tropospheric heating localized 

over the Tropics, cooling at the troposphere-stratosphere boundary north of ~45°N and 

associated mid-latitude westerly jet response, decreased sea ice, decreased heat content 

in some tropical areas, and increased (decreased) precipitation over the Tropics 

(Subtropics) are all processes in common between the two climate perturbations. A 

hypothesis that can be made to interpret these results is that phytoplankton contributes 

to a small extent to the greenhouse gas effect. Interestingly, even though the two climate 

perturbations (anthropogenic and bio-optical) are located one in the atmosphere and the 

other in the ocean, the climate system adjusts as a whole to the perturbations and the 

origin of the initial perturbation cannot be any longer distinguished.  
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Chapter 4 

Bio-physical ocean responses to the North 

Atlantic Oscillation in a coupled model 

Summary This study aims at analyzing the response of the ocean physical and 

biogeochemical properties to the North Atlantic Oscillation (NAO), the primary mode 

of climate variability in the North Atlantic sector. While physical responses to the NAO 

are rather well documented, the study of marine biogeochemical responses is made 

difficult by the shortness of available time series or limited spatial coverage. Here a 

coupled ocean-atmosphere model containing a complex marine biogeochemistry model 

is used to perform a 300-year global simulation under constant CO2 concentrations in 

which NAO variability is internally generated. It is found that NAO variability affects 

ocean properties through changes in momentum, heat and freshwater fluxes which drive 

coherent anomaly patterns in sea surface temperature, ocean mixing and circulation. 

Nutrients, chlorophyll and zooplankton concentrations are tightly related to NAO 

interannual variability mainly through changes in mixed layer depth. In particular, 

increased mixing in the subpolar gyre during positive NAO phases decreases 

phytoplankton biomass in winter and increases it in the following spring bloom because 

of higher nutrient availability. The modification of the lower trophic levels of the 

ecosystem affect in turn particulate organic matter production and air-sea CO2 fluxes, 

with potentially relevant feedbacks on climate. By analyzing the lagged response to the 

NAO it is found that ocean temperature and salinity anomalies persist and propagate in 

successive years after their generation by NAO forcing. On the other hand marine 

biogeochemistry has limited memory of NAO forcing as its variability is mainly 

governed by interannual fluctuations of vertical mixing. The interannual and low-

frequency bio-physical ocean responses to the NAO differ. During persistent positive 

NAO phases, changes in ocean circulation, i.e. an intensification of the subpolar gyre 

and an “inter gyre-gyre” anticyclonic circulation anomaly at mid-latitudes, modify the 

temperature and salinity fields, with impacts on stratification and on marine 

biogeochemistry.   
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4.1 Introduction 

Multiyear time series at fixed points and ship-based measurements of upper North 

Atlantic Ocean biogeochemical and ecological properties show interannual-to-decadal 

fluctuations (Barton et al., 2003; Bates, 2007) which are suggested to be largely 

influenced by large-scale patterns of meteorological variability. The primary mode of 

climatic variability in the North Atlantic sector from interannual to decadal time scales 

is the North Atlantic Oscillation (Bjerknes, 1964) which refers to a redistribution of 

atmospheric mass between Arctic and subtropical Atlantic. The North Atlantic 

Oscillation (NAO) is characterized at the surface by a north-south dipole of 

simultaneous out-of-phase sea level pressure anomalies (Walker and Bliss, 1932); it is 

thus a measure of the strength and position of maximum surface westerly winds across 

the Atlantic. The temporal evolution of the NAO is described by the NAO index, 

calculated as the normalized time series of sea level pressure differences between 

Portugal and Iceland (Hurrell, 1995). Positive index phases (NAO+) correspond to 

increased pressure gradients and thus to stronger-than-average westerly winds; negative 

index phases (NAO-) correspond to reduced pressure gradients and thus to a weaker and 

more zonally-oriented storm track (Fig. 4-1).  

Large scale meteorological fluctuations associated with the NAO drive coherent 

patterns of spatial and temporal variability of North Atlantic Ocean properties. On 

interannual time scales, North Atlantic Ocean sea surface temperatures and circulation 

vary primarily in response to changes in the surface winds, air-sea heat exchanges, and 

freshwater fluxes associated with changes in surface wind fields (Bjerknes, 1964). A 

NAO+ phase shows positive sea surface temperature anomalies in the subtropics and in 

the marginal seas of northern Europe, and negative anomalies at subpolar and tropical 

latitudes (Visbeck et al., 2003). On longer time scales the additional contribution of 

ocean dynamics is suggested to be playing an active role in determining the temporal 

and spatial evolution of surface and subsurface temperature anomalies (Kushnir, 1994; 

Eden and Jung, 2001). The ocean, owing to its elevated heat capacity, is capable of 

integrating atmospheric forcing and of giving rise to delayed effects in the ocean 

circulation. For instance, observational evidence suggests delayed responses to NAO 

wind forcing of the Gulf Stream – North Atlantic Current system and of the subpolar 

gyre strength (Curry and McCartney, 2001; Frankignoul et al., 2001; Flatau et al., 2003; 

Haekkinen and Rhines, 2004) which in modeling studies have been suggested to 
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produce reverberations on the meridional overturning circulation (Eden and Willebrand, 

2001; Boening et al., 2006; Bellucci et al., 2008; Deshayes and Frankignoul, 2008). The 

excitation of baroclinic Rossby waves in response to perturbations of the meridional 

overturning circulation is also suggested to be a relevant mechanism on decadal time 

scales in determining the adjustment of mid-latitude gyres to changing surface forcing 

(Frankignoul et al., 1997). 

  

Fig. 4-1 Schematic illustration of the path and strength of winter storms around high (H) and 

low (L) pressure zones in the North Atlantic corresponding to positive (left) and negative (right) 

NAO phases. From http://www.ldeo.columbia.edu/res/pi/NAO/ 

Regional patterns of NAO variability are capable of affecting ocean ecosystems through 

their local effects on upper-ocean mixing, solar radiation and ocean temperature 

(Drinkwater et al., 2003). In particular during a NAO+ phase, strengthened and 

poleward-shifted westerlies lead to surface cooling and deeper mixing at subpolar and 

tropical latitudes, and enhanced temperatures and stratification at middle latitudes 

(Cayan, 1992). Observational evidence of the influence of meteorological variability on 

marine biogeochemistry and phytoplankton ecology has been obtained in past studies 

from time series at fixed points, such as the subtropical Bermuda Atlantic Time Series 

(BATS) station (Follows and Dutkiewicz, 2002; Gruber et al., 2002; Bates, 2007) and 

the subpolar Ocean Weather Station “India” (Follows and Dutkiewicz, 2002), from 

Continuous Plankton Recorder (CPR) measurements of phytoplankton relative 

abundance (Barton et al., 2003; Leterme et al., 2005), and from satellite chlorophyll 

estimates (Follows and Dutkiewicz, 2002; Siegel et al., 2002; Henson et al., 2006; 

2009).  
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The response of phytoplankton variability to changes in mixing is hypothesized by 

Dutkiewicz et al. (2001) to be regionally dependent on the ratio between the Sverdrup 

critical depth, defining the compensation level between phytoplankton growth and loss 

rates (Sverdrup, 1953), and the local mixed layer depth. In fact when the mixed layer 

depth exceeds Sverdrup’s critical layer (around 30-60 m according to Follows and 

Dutkiewicz, 2002), there is insufficient light to drive net production and a 

phytoplankton bloom will not occur. Follows and Dutkiewicz (2002) show that the ratio 

between Sverdrup’s critical depth and the local mixed layer depth exhibits a poleward 

decrease over the North Atlantic basin, indicative of an increased light vs. nutrient 

limitation from subtropical to subpolar latitudes.  

At subtropical latitudes increased winter mixing, occurring during NAO- phases, leads 

to a stronger bloom in response to enhanced nutrient supply (Follows and Dutkiewicz, 

2002). At subpolar latitudes the phytoplankton response to NAO wind fluctuations 

appears more complex. Barton et al. (2003) analyze CPR measurements during 1948-

2000 and detect, in association with NAO+ phases, a positive trend of phytoplankton 

abundance in the transition zone (45°-55°N) between subtropical and subpolar latitudes, 

and negative trends to the north and to the south. They hypothesize that deeper mixing 

would lead to enhanced nutrient entrainment and chlorophyll in the transition zone, but 

to decreased primary productivity at subarctic latitudes because of Sverdrup’s light 

limitation theory. Conversely, in two ~3-year observational data sets Follows and 

Dutkiewicz (2002) find no discernible interannual signal in chlorophyll variability at 

subpolar latitudes - in contrast to subtropical latitudes - whereas spatial variability is 

much larger. Henson et al., (2006) investigate chlorophyll satellite products in the 

Irminger Basin and find that winter pre-conditioning is critical in determining the timing 

of the phytoplankton spring bloom and its magnitude, which is inversely correlated with 

the frequency of winter storms.  

The North Atlantic Ocean is the largest ocean sink for atmospheric CO2 in the Northern 

Hemisphere (Gruber et al., 2009). Changes in the ocean state associated with the NAO 

may also affect the capacity of the North Atlantic Ocean to absorb CO2 from the 

atmosphere, as documented by Gruber et al., (2002) and Bates (2007) for the subtropical 

Bermuda Atlantic Time Series station, Olsen et al., (2003) for the northern North 

Atlantic, and Santana-Casiano et al. (2007) for the eastern Atlantic ESTOC station. 

Positive NAO phases are found to be associated by an increased ocean capacity of 
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absorbing atmospheric CO2, as also suggested by Thomas et al. (2008) in their modeling 

study for the period 1979–2004. 

A better knowledge of the mechanisms underlying marine biogeochemistry responses to 

meteorological fluctuations is relevant in Earth system science. In fact, understanding 

the biogeochemical responses to changes in physical climate on interannual time scales 

may provide insight into potential responses to long-term human-induced climate 

trends. Moreover, quantifying the magnitude of natural fluctuations may help to 

distinguish them from human-induced trends in present-day observed time series; for 

instance, the effects on marine biogeochemistry of the persistently positive NAO phases 

in the last decades (Hurrell et al., 2003) could possibly be exchanged with impacts of 

anthropogenic climate change. Finally, if it is true human-induced climate change may 

force ocean variability towards a preferential state (Gillett et al., 2003), we can expect a 

corresponding response also in marine biogeochemical structures.  

Yet, whereas ocean physical NAO responses are rather well documented in 

observational data sets, the analysis of biogeochemical NAO responses is made difficult 

by reduced spatial and temporal coverage of available observational data sets. Ocean 

general circulation models containing interactive marine biogeochemistry and forced by 

specified or observed surface heat fluxes have thus been used to investigate the 

biogeochemical ocean responses to the NAO (Oschlies, 2001; Henson et al., 2009). 

However an analysis of this interaction within a fully coupled climate framework, 

capable of internally generating NAO-like variability and of capturing the major 

features of atmosphere-ocean-marine biogeochemistry coupling, is still lacking. 

In the present study, a climate coupled model containing interactive marine 

biogeochemistry, is used to produce a 300-year simulation under constant present-day 

atmospheric CO2 concentrations. The objective of this study is to quantify basin-scale 

responses of marine biogeochemistry to NAO variability from interannual to decadal 

time scales and to identify driving mechanisms within a fully coupled climate 

framework. With respect to previous studies the approach chosen in this work presents 

several advantages: (1) a multi-centennial time series provides more robust statistics and 

allows a separate investigation between interannual and decadal variability; (2) the 

coupled model allows for a dynamically consistent framework where feedbacks from 

the ocean to the atmosphere (including those induced by biology) are simulated; (3) 

constant CO2 atmospheric levels prevent interference of human-induced climate change 
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onto the investigated natural signal. The outcomes of this study may help to interpret 

observations obtained on smaller spatial and temporal domains and may give insight 

into basin-scale changes in upper ocean carbon fluxes with the atmosphere and deeper 

ocean. 

Scientific questions: 

1. Which are the physical mechanisms driving changes in spatial structure, magnitude 

and seasonality of biogeochemical properties in response to the NAO?  

2. Which are the lagged and low-frequency physical ocean response to the NAO and 

which is their impact on marine biogeochemistry? 

This chapter is organized as follows: in section 4.2 the North Atlantic atmospheric 

variability simulated by the coupled model will be presented. Section 4.3 investigates 

the physical and biogeochemical ocean responses to NAO interannual fluctuations in 

terms of spatial structures and seasonal evolution. Section 4.4 shows the lagged 

response to NAO forcing whereas Section 4.5 analyses the in-phase and in-quadrature 

responses to low-frequency NAO forcing. Section 4.6 discusses gives concluding 

remarks. 

4.2 North Atlantic atmospheric variability 

North Atlantic variability is investigated by means of Empirical Orthogonal Function 

(EOF) analysis calculated on December-March (DJFM) sea level pressure (hereafter 

SLP) anomalies in the North Atlantic sector (20°-70°N, 90°W-40°E). The NAO spatial 

pattern is identified as the leading eigenvector of the cross-covariance matrix and the 

NAO index as the standardized leading principal component time series. NAO 

variability explains 60% of SLP variance vs. 37% found in observations (Hurrell et al., 

2003), a bias common to other coupled models which tend to overestimate the 

percentage of variance explained by the Northern Annular Mode (Miller et al., 2006). 

The NAO index (Fig. 4-2a, bars) exhibits strong variability on interannual time scales 

and its decorrelation time scale is of 1 year, i.e. comparatively lower than the 3 years of 

the observed NAO index (Hurrell et al. 2003). Even though decadal cycles are detected 

in a 9-year running average (Fig. 4-2a, black line), the model tends to overestimate the 
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energy at interannual time scales at the expenses of decadal and multi-decadal time 

scales. This bias is common to other coupled models (Gillett et al., 2005) possibly 

caused by misrepresentations of stratosphere-troposphere coupling processes (Scaife et 

al., 2005).  

The NAO spatial pattern expressed in amplitude of hPa is obtained by regressing 

wintertime SLP anomalies on the NAO index (Fig. 4-2b, colors). During positive NAO 

phases (hereafter NAO+) anomalously high surface pressures south of 55°N are 

associated with anomalously low pressures throughout the Arctic. NAO+ phases act to 

enhance meridional pressure gradients and to displace towards north the climatological 

centers of maximum SLP (Fig. 4-2b, contours), thereby affecting wind direction, speed 

and maxima location. From Fig. 4-2c it may be seen that during NAO+ phases, 

westerlies are enhanced north of 45°N and weakened between 30°-45°N. Wintertime 

wind stress curl (Fig. 4-2d) responds to the northward shift of westerly winds by giving 

rise to an anticyclonic wind anomaly between 35°-55°N and a cyclonic anomaly to the 

south. We can then expect an enhanced anticyclonic wind driven circulation located 

between the subtropical and subpolar gyres (the “inter-gyre gyre”, Marshall et al., 

2001). During NAO+ phases the zero-wind-stress-curl line, which affects storm track 

pathways and the location of the Gulf Stream and of North Atlantic Current, increases 

its southwest to northeast tilt over the North Atlantic. The described patterns compare 

well with observations both in terms of amplitude and of spatial structure (Marshall et 

al., 2001; Hurrell et al., 2003; Visbeck et al., 2003). 
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Fig. 4-2 DJFM North Atlantic atmospheric variability. (a) NAO index (NAO+ in yellow bars, NAO-in blue bars) and its 9-point running mean (black line), (b) sea 

level pressure (hPa) climatology (contours) and regression onto NAO index (colors), (c) regression onto NAO index of wind stress (arrows, in N m
-2

) and wind 

speed at 10 m height (colors, in m sec
-1

), (d) wind stress curl (N m
-3

×10
-7

) climatology (contours) and regression onto NAO index (colors).  
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4.3 Direct response to the NAO 

4.3.1 Spatial response 

In this section the effect of interannual wind fluctuations on physical and 

biogeochemical properties over the North Atlantic Ocean will be explored. Physical 

variables are seasonally averaged over the winter season (DJFM) which is the period of 

strongest response to atmospheric forcing; for marine biogeochemistry, since we do not 

yet know when the highest response to NAO will take place, an annual average is 

performed. Here in Section 4.3.1 we focus on the temporally averaged spatial response, 

whereas the investigation of the seasonal response is deferred to Section 4.3.2. Fig. 4-3 

shows the regression between the standardized NAO index and DJFM time series of 

physical variables (in colors) described by the regression coefficient of the variable onto 

the NAO index. For reference, the respective climatological values are included as 

contours. The displayed anomalies thus correspond to NAO index values equal to 1 

(Fig. 4-2a): however it has to be noted that a strong NAO index will produce about 

twice the anomalies shown in Fig. 4-3.  

Coherent patterns of spatial variability are detected in response to interannual wind 

fluctuations. Changes in wind speed and atmospheric circulation affect net heat fluxes 

(Fig. 4-3a) mainly in response to sensible and latent heat fluxes (Cayan, 1992). During 

NAO+ phases ocean heat losses increase in the subpolar gyre and south of 30°N (~30% 

with respect to climatology) whereas they decrease at middle latitudes and in the 

Norwegian Sea. Associated buoyancy changes affect upper ocean mixing (Fig. 4-3b), 

with largest modifications occurring in the subpolar gyre, where the MLD deepening 

exceeds 120 m (>30% variation with respect to climatology). Increased stratification 

occurs instead at mid-latitudes, even though changes are less pronounced than at higher 

latitudes. The SST response (Fig. 4-3c) to local variations in surface heat fluxes results 

in a tripolar structure of simultaneous SST decrease at subpolar and tropical latitudes, 

and increase at mid-latitudes. Compared to observed variability (Visbeck et al., 2003), 

the simulated SST response to NAO is reasonably simulated, even though a positive 

SST anomaly interrupts the negative pattern at subpolar latitudes. This is possibly due 

to an overly strong response of the MLD to NAO+ forcing which promotes mixing to 

the surface layer of relatively warmer subsurface waters. 
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During NAO+ phases, the northward displacement of the storm track and associated 

moisture transport result in a precipitation increase of about 10-20% with respect to 

climatology north of 45°N and decrease between 30°-45°N and in the Labrador Sea 

(Fig. 4-3d). Salinity (Fig. 4-3e) decreases by more than 0.1 at 40-45°N and east of 

Greenland, and increases in the subpolar gyre, in the western Labrador Sea and at 

subtropical latitudes. Salinity changes appear to arise from modifications in surface 

freshwater fluxes (Fig. 4-3f) and from changes in surface freshwater advection (Fig. 4-4 

right). Evaporation minus precipitation (E minus P) is enhanced throughout the subpolar 

latitudes (0.2-0.3 mm day
-1

) because of increased evaporation (related to latent heat 

losses) and at middle latitudes (0.3-0.5 mm day
-1

) because of decreased precipitation. 

Surface freshwater fluxes due to advective processes increase by more than 2 mm day
-1

 

south of Greenland because of enhanced southward motion of surface currents (Fig. 4-4 

right), which arise as a wind-driven response to wind stress curl anomalies. The 

importance of wind-driven advective processes in determining the response of total 

freshwater flux to NAO on interannual time scales was also shown by Visbeck et al. 

(2003). During NAO+ phases sea surface height (Fig. 4-3g) increases at mid-latitudes, 

caused by enhanced heat and mass convergence by large-scale surface current 

anomalies (Fig. 4-4 right). 
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Fig. 4-3 DJFM climatologies (contours) and regression onto the NAO index (colors) of DJFM 

anomalies of (a) net surface heat flux in W m
-2

 (defined positive downwards), (b) mixed layer depth 

(MLD) in m, (c) sea surface temperature (SST) in °C, (d) precipitation in mm day
-1

, (e) surface 

salinity, (f) evaporation minus precipitation (E minus P) in mm day
-1

,
 (g) sea surface height in cm, (h) 

ocean vertical velocity at 50 m depth in cm day
-1

. 
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Fig. 4-4 (left) DJFM surface current climatology (cm sec
-1

), (right) DJFM surface currents 

regressed onto NAO index and salinity flux due to surface horizontal advection (mm day
-1

). 

Having assessed that the physical ocean response simulated by our model is reasonably 

similar to observational estimates, we now investigate how changes in upper ocean 

physics during winter affect spatial structures of marine biogeochemistry throughout the 

year. To this end we show in Fig. 4-5 linear regressions between annual time series of 

selected biogeochemical properties and standardized NAO index. The depicted 

variables are integrated throughout the euphotic layer in panels a-d and defined at the 

surface in panels e-f. 

Phosphate concentration (Fig. 4-5a), which in this model is one of the major nutrients 

limiting phytoplankton growth, is overall positively correlated to winter MLD 

variations, indicating higher nutrient supply (~30%) when winter vertical mixing is 

deeper (i.e. NAO+). The NAO explains ~10-30% of phosphate fluctuations in the 

subpolar gyre and in the western mid-latitudes (Fig. 4-6a). In addition to changes in 

mixing, subsurface ocean vertical velocities (Fig. 4-3h) induced by anomalous wind 

stress curl (Fig. 4-2d) may also lead to changes in nutrient supply (as found by Oschlies, 

2001). However since the simulated NAO anomalies of ocean vertical velocities are in 

the order of a few cm day
-1

, we expect that on interannual time scales changes in mixing 

will have a stronger effect on nutrient entrainment than vertical advection. 
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Fig. 4-5 Climatologies (contours) and regression onto NAO index (colors) of annual anomalies 

of (a) phosphate in mmol m
-2

, (b) total chlorophyll in mg m
-2

, (c) mesozooplankton in mg C m
-2

, 

(d) particulate organic carbon (POC) production in mol C m
-2

 year
-1

, (e) surface CO2 partial 

pressure (pCO2) in µatm, (f) sea-air CO2 flux (defined positive upwards) in mol C m
-2

 year
-1

. 

Variables in panels a-d are integrated over the euphotic depth. 

Phytoplankton growth can be described as a local balance between nutrient availability, 

which is positively correlated with vertical mixing, and residence time within the sunlit 

euphotic layer, which instead increases with stratification. In fact vertical mixing 

beyond a threshold depth may result in reduced phytoplankton growth because the cells, 

though nutrient-replete, continue to be mixed down to a depth where they become light-

limited. This threshold depth, estimated by Follows and Dutkiewicz (2002) to be around 

20-60 m according to solar radiation levels, is generally not met at low latitudes 

whereas it is commonly exceeded at high latitudes during the winter months (Siegel et 

al., 2002). According to latitude and season, nutrient and light limitation may thus exert 
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differing pressures on phytoplankton growth. In the present study we observe that 

during NAO+ phases, chlorophyll concentration (Fig. 4-5b), which can be considered as 

a proxy of phytoplankton biomass, increases by ~10% in the subpolar gyre, in the 

eastern Labrador Sea, and off the northwestern African coast, whereas it decreases at 

middle latitudes. 

Fig. 4-6 Variance explained by the NAO index (%) of (a) euphotic-depth-integrated phosphate 

concentration, (b) euphotic-depth-integrated chlorophyll concentration, (c) euphotic-depth-

integrated mesozooplankton concentration, (d) euphotic-depth-integrated particulate organic 

carbon (POC) production, (e) surface CO2 partial pressure (pCO2), (f) sea-air CO2 flux.  

The overall positive correlation between annual chlorophyll concentration and winter 

MLD variations indicates that on an annual scale nutrient limitation is relatively more 

important in determining phytoplankton variability than it is light limitation. Despite 

general spatial correspondence between annual phosphate and chlorophyll anomalies, 
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some dissimilarity is evident. The largest chlorophyll increase at subpolar latitudes 

occurs not in the area of MLD and nutrient maxima but at its edges. Evidently here the 

balance between light and nutrient limitations is optimal for phytoplankton growth. It 

may also be speculated that the chlorophyll increase off the northwestern African coast 

might be more related to increased upwelling caused by positive wind stress curl 

anomalies, rather than to changes in mixing, which are only slight in this area. This 

result is consistent with the study of Oschlies (2001) who finds increased advective 

nitrate supply of ~1 mol m
-2

 year
-1

 during NAO+ phases along the northwestern African 

coast. 

Chlorophyll variability affects mesozooplankton biomass (Fig. 4-5c) which increases 

during NAO+ phases of ~30% in the subpolar gyre and decreases at mid-latitudes with 

spatial structures similar to the chlorophyll changes. Changes in phyto- and zooplankton 

productivity affect in turn particulate organic carbon (hereafter POC) production which 

during NAO+ phases increases at subpolar latitudes and decreases at mid-latitudes by 

~10% (Fig. 4-5d). The NAO index generally explains up to 30% of the variance of 

chlorophyll, zooplankton and POC production in the subpolar gyre and in the western 

mid-latitudes. 

The chlorophyll increase found in the subpolar gyre during NAO+ phases does not 

agree with previous findings, based on a few years of satellite data, that in the Irminger 

Basin a bloom delay during NAO+ years related to deeper mixing decreases the 

magnitude of the subsequent spring bloom (Henson et al., 2006). Follows and 

Dutkiewicz (2002) however observe that over the whole subpolar region a clear 

interannual signal is not discernible and invoke several mechanisms including small 

scales and intermittency driving restratification processes, which the coarse resolution 

model used in this study is not able to capture. However authors also discuss that it is 

likely that the shortness of the time series and the poorer satellite data coverage at 

higher latitudes due to cloudiness may also be causing these different results. Longer 

and spatially-integrated observational records are thus required to assess prevailing 

mechanisms. 

Even though available SeaWiFS chlorophyll time series are too short to provide a robust 

statistical framework, for reference we show in Fig. 4-7 regressions between the April-

July (AMJJ) chlorophyll concentration anomalies over the euphotic depth and the 

simulated NAO index, and the SeaWiFS chlorophyll time series for the years 1998-
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2006 (McClain, 2009) regressed onto the Hurrell NAO index 

(http://www.cgd.ucar.edu/cas/jhurrell/indices.html); AMJJ climatologies are shown in 

contours for reference. It may be first of all noted that the model correctly captures the 

amplitude of the anomalies corresponding to an NAO index equal to 1. Moreover it may 

be seen that tropical and subtropical latitudes exhibit a similar response between model 

and observations, whereas at subpolar latitudes the results differ as already discussed 

previously. The chlorophyll concentration decrease found during NAO+ phases by 

Henson et al. (2006) in the Irminger Basin may be seen. However other areas south of 

Greenland and Iceland exhibit a strongly positive response which we might hypothesize 

to be due to increased nutrient availability driven by deeper mixing.  

  

Fig. 4-7: (a) simulated chlorophyll concentration in spring (AMJJ) anomalies averaged over the 

euphotic layer depth (mg m
-3

) regressed onto the normalized simulated NAO index and (b) 

spring (AMJJ) SeaWiFS satellite chlorophyll concentration anomalies (mg m
-3

) during the years 

1998-2006 regressed onto the normalized observed Hurrell NAO index. 

Climatological CO2 partial pressure (hereafter pCO2) at the ocean surface (Fig. 4-5e) 

depends on both physical and biological factors: increased MLD increases pCO2 

entrainment of carbon-rich waters, increased phytoplankton biomass lowers pCO2 by 

biological uptake, and increased temperature increases pCO2. Ocean-atmosphere pCO2
 

differences drive a CO2 flux between the two compartments whose amplitude depends 

on wind speed squared (Wanninkhof, 1992). Climatological CO2 fluxes in our model 

(Fig. 4-5f) show the subpolar latitudes as being a permanent sink of atmospheric CO2, 

with magnitudes of ~4 mol C m
-2

 year
-1

, similar to those estimated from observations 
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(Koertzinger et al., 2008; Takahashi et al., 2009). Middle and subtropical latitudes are 

either neutral or a source of CO2, in contrast to observational estimates (Takahashi et 

al., 2009) which show the zero-line of CO2 fluxes shifted much more to the south. This 

result might be explained by considering that atmospheric CO2 concentrations in our 

simulation are lower than those occurring in the 1990s, included between 350 and 360 

ppm (Bates, 2007). It is also possible that, since our model overestimates winter MLD 

in the western mid-latitudes (Fig. 2-8), enhanced entrainment of carbon-rich waters in 

winter might produce an overestimation of winter CO2 outgassing. 

In response to NAO wind variability, the model results show that changes in surface 

ocean pCO2, in the order of 5 µatm, are inversely correlated to chlorophyll 

concentration and MLD, thus indicating that on an annual time scale the dominant 

control on surface pCO2 interannual variability is exerted by biological processes. NAO 

interannual variability gives rise to modifications in sea-air CO2 fluxes through changes 

in surface pCO2, wind speed, and SST (which affects CO2 solubility in seawater). The 

subpolar gyre shows the largest response, with increased ocean CO2 uptake occurring 

during NAO+ phases because of higher biological uptake, lower SST, and stronger 

winds. This result agrees with observational studies based on fixed-point time series in 

the northern North Atlantic (Olsen et al., 2003) and in the northeastern Atlantic 

(Santana-Casiano et al., 2007), and with an ocean-marine biogeochemistry modeling 

study (Thomas et al., 2008). Changes in sea-air CO2 flux between 30°-45°N are close to 

zero (as also found by Bates, 2007) despite rather large modifications in surface pCO2. 

This effect is related to the fact that during NAO+ phases wind speed decreases between 

30°-45°N (Fig. 4-1c) thus causing CO2 flux to decrease in amplitude. The variance 

explained by the NAO in affecting CO2 fluxes is rather low (<5% on large areas). 

4.3.2 Seasonal response 

The seasonal response of marine biogeochemistry to NAO winter forcing is analyzed in 

two different geographical locations: one is in the subpolar gyre (48°-55°N; 45°-30°W), 

the other one in the Sargasso Sea around the Bermuda Atlantic Time Series (BATS) 

station (30°-40°N; 70°-60°W). In Figs. 4-8 and 4-10 monthly composites during NAO+ 

and NAO- years, defined as those in which the NAO index exceeds ±1 standard 

deviation, are shown and compared with monthly climatologies. 
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At subpolar latitudes (Fig. 4-8), the winter climatological means indicate that deep 

mixing (Fig. 4-8a) and typically low incoming solar radiation limit phytoplankton 

growth despite high nutrient availability (Fig. 4-8b). In spring the upper water column 

stratifies and the phytoplankton bloom initiates (Fig. 4-8c). The diatom peak, occurring 

in May in agreement with observations (McClain, 2009), sustains with two months 

delay a mesozooplankton biomass maximum (Fig. 4-8d). We remark that the model 

does not simulate the climatological autumn phytoplankton maximum (Mann and 

Lazier, 1996) because of underestimation of ocean mixing in autumn (Fig. 4-8a). 

Phytoplankton primary production is partly respired by heterotrophic oxidation 

reactions, and partly transferred to higher trophic levels or to dissolved and particulate 

organic matter (Fig. 4-8e) pools.  

Winter MLD interannual variability has significant impacts on nutrient availability and 

on light levels experienced by phytoplankton. Our results show that during NAO+ 

(NAO-) phases, diatom biomass decreases (increases) between January and April even 

though nutrient concentrations are higher (lower), as reported by Henson et al. (2006). 

This result may be explained by considering that deeper winter mixed layer depths 

reduce the retention time of phytoplankton inside the euphotic layer. Conversely, 

shallower mixed layers allow for an earlier increase of phytoplankton growth. However, 

during the subsequent months (May-July) phytoplankton biomass and bloom duration 

are larger when deeper mixing has occurred in winter, i.e. during NAO+ phases, 

because of higher nutrient availability.  
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Fig. 4-8 Climatological (black), NAO+ (red), and NAO- (blue) seasonal cycles in the subpolar 

gyre region of (a) mixed layer depth in m (note reversed axis), (b) phosphate concentration in 

mmol m
-2

, (c) diatom concentration in mg C m
-2

, (d) mesozooplankton concentration in mg C 

m
-2

, (e) particulate organic carbon (POC) production in mol C m
-2

 year
-1

, (f) sea-air CO2 flux 

(defined positive upwards) in  mol C m
-2

 year
-1

. Variables in panels b-e are integrated over the 

euphotic depth. 

We then conclude that changes in winter mixing affect not only the mean annual 

phytoplankton biomass, but also the amplitude and length of the seasonal cycle: during 

NAO+ phases, the seasonal cycle amplifies and the summer maximum lasts longer, 

during NAO- phases the seasonal cycle amplitude is reduced. Temporal fluctuations of 

the subpolar gyre phytoplankton bloom initiation in the order of 2-3 weeks are observed 

in relation to NAO-induced changes in light conditions (Henson et al., 2009). The 

temporal resolution of the model used in this study does not allow discrimination of 

temporal shifts below the monthly scale. We do not find changes in timing of the 
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phytoplankton seasonal peak, but we do find that the seasonal peaks of 

mesozooplankton and POC production are shifted of one month between NAO+ and 

NAO- phases and that their seasonal cycle is modified consistently with phytoplankton 

biomass variability. 

For reference we show in Fig. 4-9 composite NAO+ and NAO- seasonal cycles of 

chlorophyll concentration averaged over subpolar latitudes (45°-60°N) for SeaWiFS 

satellite values available for 1998-2006 (top) and for model chlorophyll averaged over 

the euphotic depth (bottom). Composites are calculated by selecting years in which the 

observed and simulated normalized NAO index exceeds +1 (-1) standard deviation. The 

model simulates rather well the magnitude and timing of the spring phytoplankton 

bloom, even though it exhibits an anticipated bloom ending and underestimated 

chlorophyll values in autumn-winter. In response to NAO+ phases SeaWiFS satellite 

estimates show a slight decrease of chlorophyll concentrations in winter and an increase 

in spring-summer, as seen in the model results analyzed in this study. We may therefore 

hypothesize that the processes found in the model leading to chlorophyll changes may 

indeed be valid. However it has to be stressed that these are only speculations, as the 

shortness of the satellite time series does not allow robust statistics. 

Climatological sea-air CO2 fluxes (Fig. 4-8f) exhibit seasonal oscillations with the 

ocean being a source of CO2 in winter, when deep mixing entrains subsurface carbon-

rich waters, and a sink in the remaining part of the year, when pCO2 is lowered by the 

biological and solubility pumps, consistently with observations (Koertzinger et al., 

2008). During NAO+ phases, deep winter mixing of carbon-rich waters increases winter 

CO2 outgassing, whereas lower SST and increased primary production in the subsequent 

months increase ocean CO2 uptake. Despite increased winter CO2 outgassing, the 

annual net of these two processes results in an increase in ocean CO2 uptake during 

NAO+ phases. 
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Fig. 4-9 Climatological (black), NAO+ (red), and NAO- (blue) seasonal cycles in the subpolar 

latitudes of the North Atlantic (50°-60°N,50°-10°W) of (top) SeaWiFS satellite estimates of 

chlorophyll values (mg m
-3

) during the years 1998-2006 and (bottom) model chlorophyll 

concentration (mg m
-3

).  

The BATS area (Fig. 4-10) is located in the northwestern Atlantic in the transition zone 

between easterlies and westerlies and in a region of near zero mean geostrophic 

circulation (Bates, 2007). It represents the equatorward limit of significant winter 

mixing and is then expected to be largely influenced by interannual changes in 

atmospheric and oceanic forcing (Longhurst, 2007). Compared to the subpolar regime, 

mixed layers are shallower and upper-ocean nutrient, phytoplankton and zooplankton 

concentrations are lower. Nutrient limitation is more effective in controlling 

phytoplankton growth than light limitation, and the phytoplankton and zooplankton 

blooms occur coincidentally or with little delay with respect to the MLD seasonal 

maximum (Fig. 4-10 a-d). POC production (Fig. 4-10e) is lower than at subpolar 

latitudes, both because primary production is lower, and because the phytoplankton 

community is characterized by a higher nanophytoplankton fraction (not shown) having 

lower POC production rates. 
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Fig. 4-10 Climatological (black), NAO+ (red) and NAO- (blue) seasonal cycles in the Sargasso 

Sea near BATS of (a) mixed layer depth in m (note reversed axis), (b) phosphate concentration 

in mmol PO4 m
-2

, (c) diatom concentration in mg C m
-2

, (d) mesozooplankton concentration in 

mg C m
-2

, (e) particulate organic carbon (POC) production in mol C m
-2

 year
-1

, (f) sea-air CO2 

flux (defined positive upwards) in  mol C m
-2

 year
-1

. Variables in panels b-e are integrated over 

the euphotic depth. 

NAO-related changes in winds drive an opposite response with respect to subpolar 

latitudes of MLD which shoals during NAO+ phases and deepens during NAO- phases. 

MLD interannual variability (Fig. 4-10a), though less pronounced than in the subpolar 

gyre, yet causes a 25% change in phosphate concentrations (Fig. 4-10b), with consistent 

impacts on the seasonal cycle amplitude and phase of all biological components. During 

NAO+ phases, shallower winter MLD causes phytoplankton to peak already in 

February, i.e. one month earlier than average. This might be due to a combination of 

increased light availability in winter and insufficient nutrients in following months. A 
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30-40 day earlier bloom start during NAO+ phases was also found at mid-latitudes by 

Henson et al., (2009) caused by increased retention inside the euphotic layer. In contrast 

to subpolar latitudes (Fig. 4-8) winter phytoplankton biomass does not increase when 

MLDs are shallower, because at these latitudes light limitation is less effective than 

nutrient limitation in controlling phytoplankton growth. In general, we observe that in 

this model changes in amplitude of the seasonal cycle are more typical of subpolar 

latitudes, whereas changes in phase are more common at subtropical latitudes. 

At BATS, the simulated climatological sea-air flux of CO2 is positive throughout the 

year (Fig. 4-10f), with higher values during winter and lower values in the remaining 

part of the year. As already noted in the previous section, our model tends to 

overestimate ocean outgassing in this area. CO2 outgassing increases when winter MLD 

is deeper and decreases when spring biological uptake is higher and SST lower, with a 

resulting amplification of the seasonal cycle during NAO- phases and reduction during 

NAO+ phases. However averaged over the whole year NAO interannual variability 

does not significantly modify CO2 fluxes. 

4.4 Lagged response to the NAO 

Simulated SST anomalies generated by NAO forcing maintain statistically significant 

correlations with the NAO index (at 95% confidence level) with lags up to 3 years (Fig. 

4-11). Similar ocean memory is found in observational reanalyses such as the 100-year 

Kaplan winter anomaly SST data set (Kaplan et al., 1998; Visbeck et al., 2003) and the 

winter Hadley SST reanalysis (Rayner et al., 2003) during the years 1930-2002 (Fig. 4-

12). In Fig. 4-12 correlations are computed with respect to the observed station-based 

Hurrell NAO index (http://www.cgd.ucar.edu/cas/jhurrell/indices.html). The observed 

persistence is significantly longer than one might expect from local air-sea interaction, 

yielding decay scale of about 3 months (Frankignoul et al., 1998), and may be explained 

by the ‘‘reemergence mechanism” (Alexander and Deser, 1995; Deser et al., 2003). This 

mechanism suggests that a shallow summer thermocline shields subsurface temperature 

anomalies from atmospheric damping and large current shears, making it possible for 

the anomalies to become partially re-entrained into the mixed layer during the following 

winter.  

From both model results and observational estimates, SST anomalies show evidence of 

propagation away from their source region during successive years. In the coupled 
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simulation analyzed here, SST anomalies generated by NAO+ forcing along the North 

American coast propagate northeastward in successive years, whereas negative SST 

anomalies generated in the subpolar gyre persist concentrate in the southern limb of the 

gyre (Fig. 4-11). In the Hadley SST data set, temperature anomalies are shifted 

northeastward in successive years even though with slower apparent propagation speeds 

with respect to the coupled simulation (Fig. 4-12). This behavior might be explained 

considering that decorrelation time scales in the coupled model are much higher (i.e. 1 

year) with respect to the observed values of 3 years (Fig. 4-13): therefore in 

observations SST anomalies are actively forced in following years by an NAO index of 

the same sign.  

Other observational data sets have also shown evidence of persistent and propagating 

SST anomalies below the seasonal thermocline close to the Gulf Stream – North 

Atlantic Current path (Levitus et al., 1994; Sutton and Allen, 1997; Sinha and Topliss, 

2006) and in the subpolar gyre (Reverdin et al., 1997). Advection of temperature 

anomalies by the mean circulation is invoked as a possible mechanism explaining the 

temporal evolution of SST anomalies (Hansen and Bezdek, 1996; Sutton and Allen, 

1997). However Visbeck et al. (1998) and Krahmann et al. (2001) show that the overall 

cross basin propagation speed depends on the forcing frequency and is not simply set by 

the advection speed of the upper ocean, suggesting that temperature anomalies are not 

only passively drifting with ocean currents but also actively forced and destroyed by 

ocean-atmosphere coupling.  
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Fig.  4-11 Lagged correlations between NAO index and DJFM SST anomalies with (a) no lag, (b) 1 year 

lag, (c) 2 years lag, (d) 3 years lag. Correlation coefficients lower than 0.14 are not statistically 

significant at 95% confidence level and are not shown.  

 
 

 

  

Fig.  4-12 Lagged correlations between Hurrell NAO index and Hadley SST DJFM anomalies for the 

period 1930-2002 with (a) no lag, (b) 1 year lag, (c) 2 years lag, (d) 3 years lag. Correlation coefficients 

lower than 0.24 are not statistically significant at 95% confidence level and are not shown. 
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Fig. 4-13 Decorrelation time scale for 200 years of the simulated NAO index (black line, 

circles) and for the 1860-2009 Hurrell NAO index (gray line, triangles). 

 

 

Fig. 4-14 Lagged correlations between NAO index and spring-summer (AMJJ) chlorophyll 

anomalies with (a) no lag, (b) 1 year lag, (c) 2 years lag, (d) 3 years lag. Correlation coefficients 

lower than 0.14 are not statistically significant at 95% confidence level and are not shown. 

In contrast to SST, correlations between the NAO index and chlorophyll concentration 

do not show large significance in successive years (Fig. 4-14). This result may be 

related to possible reasons: (1) simulated marine biogeochemistry is mainly controlled 

by interannual fluctuations of vertical mixing, characterized by the fast decorrelation 
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time scales typical of atmospheric signals; (2) nutrients are completely consumed in 

summer (Figs. 4-8 and 4-10) and thus the biogeochemical system is “re-set” each year.  

4.5 Low-frequency response to the NAO 

For the analysis of the in-phase ocean response to low-frequency NAO cycles, 

composite years for positive (NAO+) and negative (NAO-) NAO phases are selected by 

using the 9-year running average of the NAO index (Fig. 4-2a). For biogeochemical 

variables, time series detrended with a second order polynomial fit (see Section 2-4) are 

employed. For the in-quadrature ocean response to low-frequency NAO cycles, 

transition periods between opposite low-frequency NAO phases symmetrical with 

respect to the zero-crossing of the NAO index 9-year running average are chosen. The 

in-phase response will give information on the effect of persistent NAO forcing on 

ocean properties, whereas the in-quadrature response, characterized by NAO forcing 

close to zero (not shown), will tell whether the ocean keeps memory of previous phases 

of low-frequency NAO forcing. In order to test robustness of results, also 9-year 

running means of the investigated variables are computed and the regression with the 9-

year running mean of the NAO index (for the in-phase response) and with its derivative 

(for the in-quadrature response) calculated. The two methods - regression and 

composites - yield similar results (not shown). In the following composites will be 

shown.  

The in-phase response of physical ocean properties to low-frequency NAO forcing is 

shown in Fig. 4-15 (left) for SST, heat content integrated between 0-300 m depth, and 

sea surface salinity (SSS), and in Fig. 4-16 (top) for sea surface height and horizontal 

currents averaged between 40-100 m depth.  
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Fig. 4-15 In-phase (left) and in-quadrature (right) response to NAO+ low-frequency phases of 

(a,b) sea surface temperature (SST) in °C, (c,d) heat content integrated between 0-300 m depth 

in J m
-2

 and (e,f) sea surface salinity (SSS). 
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Fig. 4-16 In-phase (top) and in-quadrature (bottom) response to NAO+ low-frequency phases of 

(a,b) sea surface in cm (colors) and horizontal currents averaged between 40-100 m depth. 

At mid-latitudes, positive SST anomalies (Fig. 4-15a) generated by persistent NAO+ 

phases are concentrated on a narrow zonal band at 40-45°N, instead of covering the 

whole 30°-45°N area. This structure is possibly related to (1) the time averaging of SST 

anomalies propagating with yearly lags along the North Atlantic Current, and (2) the 

increased mass convergence into the area related to persistent wind stress curl anomalies 

(Fig. 4-2d), which causes positive sea surface height anomalies between 40°-45°N (Fig. 

4-16, colors); changes in sea surface height in turn modify horizontal currents through 

geostrophy giving rise to an anomalous anticyclonic circulation (Fig. 4-16, arrows). The 
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anomalous anticyclonic circulation causes (1) an intensification of the North Atlantic 

Current which reinforces and confines positive temperature and salinity (Fig. 4-15e) 

anomalies around 40°N; (2) an increase of southward transport in the eastern part of the 

basin (Fig. 4-16) thus reducing heat and salinity advection into the eastern subpolar 

gyre, as also shown by Herbaut and Houssais (2009) and Frankignoul et al., (2009). 

Positive 0-300 m heat content anomalies (Fig. 4-15c) show a northeastward extension 

up to 55°N in equilibrium with the sea surface height and geostrophic currents (Fig. 4-

16), possibly indicating that ocean dynamics plays a role in determining the shape of 

subsurface temperature anomalies. This northeastward extension is not visible at the 

surface likely because of atmospheric damping (Masina et al., 2004). 

At subpolar latitudes, persistent NAO+ phases cause negative SST anomalies 

throughout the subpolar gyre without being interrupted, as seen in the interannual 

response, by anomalies of opposite sign in correspondence of maximum MLD 

deepening. This might be due to the fact that increased buoyancy losses during 

persistent NAO+ phases cool subsurface layers more effectively than in the interannual 

case; thus mixed layer deepening typical of NAO+ phases (Fig. 4-3b) would not entrain 

to the surface relatively warmer subsurface waters. Sea surface height is lower 

throughout the subpolar gyre and Labrador Sea, in geostrophic balance with cyclonic 

circulation anomalies which enhance the strength of the subpolar gyre (Haekkinen and 

Rhines, 2004; Boening et al., 2006).  

Pronounced freshening occurs in the subpolar gyre, in the Labrador Sea and in the 

eastern mid-latitudes. Whereas on interannual time scales surface salinity mainly 

responds to local changes in evaporative fluxes and wind-driven currents (Fig. 4-3f and 

4-4 right, Visbeck et al., 2003), in response to persistent NAO+ phases low frequency 

changes in geostrophic ocean advection (Fig. 4-16) appear to be more relevant. In 

particular, NAO+ forcing is associated with reduced northward salt transport in the 

eastern subpolar gyre regions by the wind-driven intergyre-gyre (Marshall et al., 2001), 

and increased southward flows of freshwater related to increased subpolar gyre strength 

(Fig. 4-16). Similar processes were also detected in observational (Reverdin et al., 1997; 

Belkin, 2004) and modeling studies (Frankignoul et al., 2009; Herbaut and Houssais, 

2009), where it was found that anomalous circulation induced by NAO forcing plays a 

relevant role in the generation and spreading in successive years of surface salinity 

anomalies.  
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By analyzing the in-quadrature ocean response (Fig.4-15, right panels, Fig. 4-16 

bottom), it can be seen that positive SST and salinity anomalies generated at mid-

latitudes by persistent NAO+ forcing continue to spread northeastward despite the 

absence of NAO-derived forcing. A similar result was found by Eden and Jung (2001) 

who explain the SST anomaly evolution as due to delayed convergence of heat transport 

from anomalous ocean circulation. Also the subpolar gyre exhibits memory of previous 

persistent NAO+ forcing, especially for subsurface heat content (Fig. 4-15d), sea 

surface height, and near-surface currents (Fig. 4-16) but less for SST and SSS anomalies 

which are more affected by atmospheric coupling. The ocean is thus providing 

significant amounts of memory to the system for several years after a persistent NAO 

forcing phase. These results also point to the importance of ocean preconditioning in the 

passage from one NAO decadal cycle to its opposite phase, as found by Lohmann et al. 

(2009b). 

  

  

Fig. 4-17 In-phase response to low-frequency NAO+ phases of (a) mixed layer depth (m), (b) 

euphotic-depth-integrated phosphate concentration (mmol m
-2

), (c) euphotic-depth-integrated 

chlorophyll concentration (mg m
-2

), (d) sea-air CO2 fluxes in mol m
-2 

year
-1

.  

In response to persistent NAO+ forcing, MLD (Fig. 4-17a) deepens in confined areas of 

the Irminger and GIN Seas, and becomes shallower in the remaining areas of the 45°-

60°N belt, contrarily to the interannual response (Fig. 4-3b). We may explain this result 
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by considering that mixed layer depth variability is determined by upper ocean density 

modifications which are driven by both temperature and salinity changes. The extensive 

freshening occurring in the subpolar gyre and in the eastern middle latitudes during 

persistent NAO+ phases (Fig. 4-15e) enhances stratification in these areas. Thus on 

decadal time scales persistent changes in salinity acquire more importance, in 

comparison with surface heat fluxes, in determining MLD variability. 

Low-frequency changes in MLD are positively correlated with phosphate (Fig. 4-17b) 

and chlorophyll concentration anomalies (Fig. 4-17c), indicating that, similarly to the 

interannual time scale, deeper-than-average MLDs entrain more nutrients to the surface 

in winter which may be used by phytoplankton in the following spring-summer. Low-

frequency changes in MLD are instead negatively correlated with sea-air CO2 flux 

anomalies (Fig. 4-17d), indicating that when MLD is deeper the ocean CO2 uptake 

increases because of higher primary production and lower sea surface temperatures. It 

may be seen that in the subpolar gyre, the areas of decreased CO2 ocean uptake (positive 

anomalies) are much larger compared to the interannual response. In other words, 

whereas the interannual response to NAO+ phases causes a large ocean CO2 absorption 

at the surface (Fig. 4-5f), on lower frequency the effect that ocean dynamics has on 

ocean stratification acts to weaken the ocean CO2 absorbing capacity. This indicates that 

one cannot extrapolate the biogeochemical response to NAO fluctuations to decadal 

time scales, as these are affected also by slower time scales set by ocean dynamics. 
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4.6 Conclusions 

The study analyzed the response of the physical and biogeochemical ocean system to 

North Atlantic Oscillation (NAO) from interannual to decadal time scales. A fully 

coupled model containing interactive marine biogeochemistry was used to produce a 

300-year simulation under constant CO2. The climate model is found to be capable of 

internally generating NAO-like variability and of reproducing the main features of the 

North Atlantic Ocean response to NAO interannual fluctuations through changes in 

heat, freshwater, and momentum fluxes. 

In this modeling study, NAO interannual fluctuations are found to explain a substantial 

amount of marine biogeochemical variability in the North Atlantic Ocean. Marine 

biogeochemistry is found to mainly respond to changes in winter mixing, which 

influences phytoplankton growth through light and limitation mechanisms. Increased 

winter mixing, occurring during NAO+ in the subpolar gyre and during NAO- at middle 

latitudes, causes phytoplankton growth to decrease in winter (light limitation) and to 

increase during the following spring (increased nutrient availability), similarly to what 

found in the 9-year time series of SeaWiFS satellite estimates. In particular, deeper 

ocean mixing causes: 

1. An amplification of seasonal cycles of phytoplankton, zooplankton, particulate 

organic matter production, and air-sea CO2 fluxes. 

2. Higher biomasses of phytoplankton and zooplankton on annual scales (10-20% with 

respect to climatology). In the subpolar gyre this implies increased air-to-sea CO2 fluxes 

and particulate organic matter production by phyto- and zooplankton. 

The analysis in the coupled model of lagged ocean responses to NAO fluctuations 

shows that temperature and salinity anomalies persist up to 3 years after their 

generation, similarly to what found in ocean reanalyses. This behavior suggests an 

ocean memory of the NAO signal which is further investigated with a low-frequency 

analysis of the ocean responses. It is found that under persistent positive NAO phases 

ocean circulation adjusts to the modified wind stress curl field, influencing the ocean 

temperature and salinity fields as well. This study also shows that ocean anomalies 

generated on decadal time scales persist also when NAO forcing ceases, re-confirming 

the capability of the ocean of integrating the atmospheric signal over time. In contrast, 

in this model simulation ocean marine biogeochemistry has limited memory of NAO 
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forcing suggesting that its variability is mainly governed by interannual fluctuations of 

vertical mixing. However, the ocean changes occurring on decadal time scales in 

response to low-frequency NAO forcing are found in this study to generate some 

impacts on ocean stratification and marine biogeochemistry as well.  

Outlook 

This modeling study has found that during positive NAO phases CO2 air-to-sea fluxes 

and particulate organic matter (POC) production, a proxy of carbon export from the 

ocean surface layer, increase by 10-20% in the subpolar gyre (see schematic 

representation in Fig. 4-18). This behavior is caused by increased wind speeds which 

enhance mixing, primary productivity, and ocean-atmosphere gas transfer velocity. The 

combined effect of these two processes (increased CO2 fluxes and POC production) 

might lead to an increased uptake of carbon from the North Atlantic Ocean during 

positive NAO phases. If this is true, an increase of NAO+ phases, suggested as partly 

caused by anthropogenic CO2 concentrations (Gillett et al., 2003), may act as a negative 

feedback to increased anthropogenic CO2 emissions. How this processes may impact 

carbon sequestration into deeper ocean layers on longer time scales was not investigated 

in this study, and constitutes a relevant scientific question to be addressed in future 

studies. 

 

Fig. 4-18 Schematic diagram of the subpolar changes in air-to-sea CO2 fluxes and 

production of particulate organic matter (POC) during positive (NAO+) and negative 

(NAO-) phases. Large arrows indicate large fluxes, small arrows reduced fluxes. 
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Chapter 5 

North Pacific marine biogeochemical variability 

in XX and XXI century simulations 

Summary This study addressed the impacts on North Pacific marine 

biogeochemistry of natural climatic fluctuations and anthropogenic climate change 

induced by increased CO2 emissions. To this end a coupled model containing interactive 

marine biogeochemistry is used to produce a XX century simulation forced with 

observed atmospheric greenhouse gas concentrations, and a XXI century simulation 

forced with the IPCC SRES “business-as-usual” A1B scenario of greenhouse gases 

increase. It is found that the leading mode of natural atmospheric variability over the 

North Pacific involves fluctuations of the Aleutian Low strength, whereas the second 

mode involves a seesaw of atmospheric mass between subtropical and subpolar 

latitudes. Associated wind changes affect ocean temperature and mixing with impacts 

on the phytoplankton spring bloom. In particular the first mode of atmospheric 

variability causes 20-30% chlorophyll changes according to an east-west dipole; the 

second forces ~10% chlorophyll changes according to a north-south dipole. 

Comparisons between XX and XXI century simulations show that increased 

atmospheric CO2 levels produce sea surface temperatures up to 5°C higher with respect 

to the XX century, which drastically reduce ocean mixing and its interannual variability 

in this region. These environmental changes cause a 50% decrease in the subpolar gyre 

spring phytoplankton bloom and reduced interannual variability on most of the basin; 

the variance explained by the two dominant modes of atmospheric variability remains 

nonetheless virtually unchanged in the XX and XXI century. These results show that in 

a A1B emission scenario, human-induced trends may be considered as the largest 

source of biogeochemical variation; however natural interannual fluctuations may 

superimpose to anthropogenic-induced trends and influence the temporal evolution of 

marine biogeochemical properties. 
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5.1 Introduction 

Observations of biogeochemical and ecological properties in the North Pacific Ocean 

for the XX century reveal interannual to decadal fluctuations (Miller and Schneider, 

2000; Schwing et al., 2010) superimposed to longer term trends (Karl et al., 2001; 

Watanabe et al., 2005; Ono et al., 2008). Whereas the former have been often found to 

correlate with climatic indices reflecting large-scale fluctuations in the climate system, 

the latter have been related to ocean changes due to human carbon emissions in the 

atmosphere. Separating these two phenomena is made difficult by their intrinsically 

coupled nature, and by the relatively short observational records of marine 

biogeochemical properties compared to the temporal scales of decadal and multi-

decadal variability. 

The leading mode of atmospheric variability in the North Pacific sector is the Pacific–

North America (PNA) pattern (Wallace and Gutzler, 1981) which is associated with the 

modulation of the Aleutian Low, the Asian jet, and the Pacific storm track. Fluctuations 

in the strength of the winter Aleutian Low pressure system co-vary with the first mode 

of sea surface temperature variability in the North Pacific, the Pacific Decadal 

Oscillation (Mantua et al., 1997). The Pacific Decadal Oscillation (hereafter PDO) 

index exhibits the tendency for multiyear and multidecadal persistence with a few 

instances of abrupt sign changes, as it occurred in 1976-1977 (Mantua and Hare, 2002; 

Deser et al., 2006). The temporal evolution of the PDO has been linked to several 

biological and ecosystem regime shifts in the ocean (Hare and Mantua, 2000; Miller and 

Schneider, 2000; McFarlane et al., 2000).  

Recently a link was also found between low-frequency fluctuations of Northeast Pacific 

marine biogeochemistry and the second mode of Northeast Pacific sea surface height 

variability, i.e. the North Pacific Gyre Oscillation (NPGO, Di Lorenzo et al., 2008, 

2009), which closely tracks the second mode of North Pacific sea surface temperature 

variability, i.e. the Victoria mode (Bond et al., 2003). The NPGO is the oceanic 

expression of the North Pacific Oscillation (NPO) which is identified by fluctuations of 

the sea level pressure between Hawaii and the Gulf of Alaska (Walker and Bliss, 1932), 

and co-varies with winter temperature differences between western Alaska-eastern 

Siberia and western Canada (Rogers, 1981). Since the NPO involves a redistribution of 

atmospheric mass between subtropical and high latitudes in the North Pacific, it is 
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suggested to be a basin analog of the North Atlantic Oscillation (Linkin and Nigam, 

2008), even though atmospheric teleconnections between the North Pacific and North 

Atlantic appear to be complex and non-stationary (Zhao and Moore, 2009). 

In addition to natural variability cycles, anthropogenic CO2 emissions are expected to 

produce significant impacts on North Pacific Ocean properties (Meehl et al., 2007) 

which in turn may affect marine biogeochemistry mainly through changes in ocean 

temperatures, mixing and upwelling. Some of these effects have already been detected 

in the last decades of the XX century. In the subarctic northeast Pacific, Freeland et al., 

(1997) observed a shoaling of the mixed layer depth in the last 60 years of the XX 

century in response to upper ocean warming and freshening; however Li et al., (2005) 

analyzed several stations of the Alaskan Gyre and found a more complex picture of 

mixed layer depth temporal and spatial responses over the period 1956-2001 owing to 

various regional forcing factors such as Ekman pumping, heat and freshwater fluxes. 

Ono et al. (2008) found a decreasing nutrient trend in the period 1975-2005 in the 

Subarctic North Pacific region between 155°E and 135°W which is significantly 

correlated with sea surface temperature changes. At the ocean station ALOHA near 

Hawaii in the subtropical North Pacific subtropical gyre, Karl et al. (2001) have 

observed changes in nutrient levels, primary productivity, and pigment concentrations in 

the last three decades of the XX century, suggestive of a shift in the ecosystem structure 

towards smaller-sized phytoplankton. 

Models have also been used to address impacts of both natural fluctuations and of 

human-induced climate change on North Pacific marine biogeochemistry and 

ecosystems. A number of modeling studies have shown that climate indices may be 

correlated with biogeochemical variability in the northeastern Pacific (Chai et al., 2003; 

Alexander et al., 2008; Di Lorenzo et al., 2008, 2009). By using six different coupled 

climate model simulations, Sarmiento et al. (2004) suggested that anthropogenic climate 

warming may cause geographical biomes shifts and decreased nutrient supply in the 

North Pacific. Hashioka et al. (2009) used an eddy-permitting ecosystem model forced 

with future climate forcings and found that climate-induced enhancement of ocean 

stratification may impact the timing and magnitude of the subarctic spring bloom. In 

addition, Bopp et al. (2005) found in an ocean biogeochemistry model coupled to a 

climate model, that more nutrient-depleted conditions in the surface ocean may favor 
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small phytoplankton at the expense of diatoms therefore causing changes in 

phytoplankton community composition. 

In the XX century, North Pacific natural ocean variability and human-induced impacts 

on sea surface temperatures appear to fall under the same order of magnitude, e.g. 0.5-

1°C (Bindoff et al., 2007); however climate projections under increased CO2 emission 

scenarios show that future anthropogenic impacts may largely exceed the amplitude of 

natural fluctuations (Meehl et al., 2007; Wang et al., 2010). A comprehensive 

investigation of how natural and anthropogenic sources of variability may 

simultaneously affect the patterns of spatio-temporal variability of North Pacific Ocean 

is still to be addressed. Earth System Models, in the limits of their biases and coarse 

resolution, may be used in combination with extended observational efforts, to address 

this topic in both present and future climate projections.  

This study investigates the response of marine biogeochemistry to natural and human-

induced climate variability by using an Earth System Model. Two simulations are 

produced and compared: a historical XX century simulation was performed forced with 

observed greenhouse gases, aerosol, ozone, and sulfate concentrations and a XXI 

century climate projection forced with the Intergovernmental Panel on Climate Change 

(IPCC) A1B emission scenario (Nakicenovic and Swart, 2000). The main scientific 

questions of this study are: 

Scientific questions: 

• Which is the response of chlorophyll concentration to climate natural variability 

in the North Pacific? 

• Which are the impacts of increased atmospheric CO2 levels on chlorophyll 

structures and on their variability? 

This chapter is organized as follows: section 5.2 shows the main features of North 

Pacific variability simulated by the coupled model; section 5.3 focuses on the bio-

physical ocean responses to climate variability in the North Pacific, distinguishing 

between natural fluctuations and anthropogenic impacts. Finally, section 5.4 gives some 

concluding remarks. 
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5.2 North Pacific variability  

North Pacific atmospheric variability is investigated by means of Empirical Orthogonal 

Function (EOF) analysis calculated on January-March (JFM) sea level pressure 

(hereafter SLP) anomalies in the North Pacific sector (20°-65°N, 120°E-100°W). The 

spatial patterns of leading modes of sea level pressure variability over the XX century 

are shown in Fig. 5-1 by regressing JFM anomalies of SLP, winds and wind stress curl, 

onto the first and second standardized principal component (hereafter PC) time series 

(Fig. 5-2 a,b). The displayed anomalies in Fig. 5-1 correspond to PC values equal to 1, 

however it has to be noted that a strong index phase will yield about twice the shown 

anomalies. 

The first mode of sea level pressure variability (52% explained variance in the XX 

century) is associated with fluctuations in the Aleutian Low strength and position (Fig. 

5-1a) and has been shown to be closely related to the North Pacific Index, i.e. the mean 

SLP anomaly in the Aleutian Low over the Gulf of Alaska (Trenberth and Hurrell, 

1994), and to the Pacific North American (PNA) pattern in the troposphere (Wallace et 

al., 1992), calculated as the normalized 500 hPa height anomalies at 20°N, 160°W and 

55°N, 115°W minus those at 45°N, 165°W and 30°N, 85°W (Wallace and Gutzler, 

1981). By convention, when the first mode of sea level pressure variability is in its 

positive polarity, the Aleutian Low is stronger than usual and the wind field exhibits a 

cyclonic circulation anomaly throughout the North Pacific (Fig. 5-1c). This involves 

strengthening of westerly winds between 30°-45°N and weakening in the eastern Pacific 

between 45°-55°N, an increase of high-latitude easterlies, and weakening of subtropical 

easterlies. Changes in wind patterns in turn affect wind stress curl (Fig. 5-1e), which 

exhibits overall cyclonic anomalies (around 10% of climatology) north of 40°N (except 

for coastal domains) and anticyclonic anomalies to the south.  
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Fig. 5-1 XX century JFM sea level pressure (hPa) regressed onto the first (c) and second (d) 

principle component (PC) time series of JFM SLP anomalies with winter climatology plotted in 

contours for reference; JFM wind velocity (m sec
-1

) at 10 m height regressed onto the first (c) 

and second (d) PC time series of JFM SLP anomalies; JFM wind stress curl (1×10
-7

 N m
-3

) 

regressed onto the first (e) and second (f) PC time series of JFM SLP anomalies. For 

construction these maps show anomalies relative to index values equal to1.  

The second mode of North Pacific JFM SLP variability (22% explained variance in the 

XX century), corresponding to the North Pacific Oscillation (NPO), involves a north-

south dipole characterized by simultaneous out-of-phase fluctuations of atmospheric 

mass between subtropical and subpolar latitudes (Fig. 5-1b). By convention, positive 
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polarities of the NPO indicate an enhancement of the north-south SLP difference, which 

in turn is associated with an intensification and northward shift of mid-latitude 

westerlies (Fig. 5-1d). The northward shift in westerly winds gives rise to a negative 

wind stress curl anomaly between 30°-45°N and a positive anomaly north of 50°N (Fig. 

5-1f). 

EOF analysis is performed also on JFM sea surface temperature (hereafter SST) 

anomalies over the North Pacific sector (20°-65°N, 120°E-100°W) and the 

corresponding standardized PC time series of first and second modes of variability 

computed separately for the XX and XXI centuries are shown in Fig. 5-2 together with 

winter SLP PC time series. The first mode of SST variability in the North Pacific is the 

Pacific Decadal Oscillation (PDO, Mantua et al., 1997), whereas the second mode is 

known as the “Victoria” mode (Bond et al., 2003), which is in turn related to the second 

mode of Northeast Pacific sea surface height variability, the North Pacific Gyre 

Oscillation (NPGO, Di Lorenzo et al., 2008). Variability of SLP and SST PC time series 

show general correspondence, especially in their low frequency temporal evolution (Fig. 

5-2, red lines), indicating a relevant atmospheric source for North Pacific SST 

variability (Schneider and Cornuelle, 2005; Chhak et al., 2009; D’Orgeville and Peltier, 

2009). Indeed, Schneider and Cornuelle (2005) show that the PDO pattern and evolution 

can be reconstructed using an autoregressive model forced by variability of the Aleutian 

low, El Niño-Southern Oscillation (ENSO) and oceanic circulation anomalies in the 

Kuroshio-Oyashio Extension region, with changes of the Aleutian low and of ENSO 

being essential on interannual frequencies. Compared to SLP which exhibits high-

frequency fluctuations at interannual time scales, SST variability shows higher energy at 

decadal frequencies with a spectral peak at ~12 years (not shown), which is slightly 

lower but still comparatively similar to the observed PDO period (Mantua and Hare, 

2002). These longer time scales are possibly related to the integrating effect of the upper 

ocean mixed layer (Newman et al., 2003), to ocean advective processes, and to the 

excitation of low frequency off-equatorial Rossby waves (Schneider and Cornuelle, 

2005; Power and Colman, 2006; Kwon and Deser, 2007). 
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Fig. 5-2 (a) First (PC1, light grey) and (b) second (PC2, dark grey) PC time series of JFM SLP 

anomalies during the XX and XXI centuries (bars). (c) First (PC1, light grey) and (d) second 

(PC2, dark grey) PC time series of JFM SST anomalies during the XX and XXI centuries (bars). 

Red lines indicate 9-year running averages and numbers indicate the variance explained by each 

mode during the XX and XXI centuries. 

By comparing the variance explained by each mode in XX and XXI century simulations 

(percentages in bottom part of each panel), it may be seen that the variance explained by 

the first and second SLP modes remains approximately equal (i.e. 2% changes), as 

similarly found by Keeley et al. (2008). On the other hand, in the XXI century the 
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variance explained by the PDO exhibits a 10% increase with respect to the XX century, 

and the variance explained by the second mode of SST variability decreases by 5%. 

Thus the model indicates that global warming interacts with upper ocean temperature by 

selecting PDO variability more efficiently than the Victoria mode of SST variability. 

However the physical link between global climate change and Pacific variability 

changes is a still topic of scientific debate (Corti et al., 1999; Rauthe et al., 2004). 

5.3 Ocean bio-physical response to atmospheric forcing  

5.3.1 Natural variability 

Ocean physical properties are regressed onto the first and second PC time series of 

winter SLP anomalies in the XX century. Fig. 5-3 shows the regression coefficients 

relative to JFM net surface heat fluxes (a,b), SST (c,d) and mixed layer depth (e,f), 

where for construction the computed anomalies correspond to index values equal to 1. It 

has to be noted that a high index phase in the model (Fig. 5-2) would produce anomalies 

that are about twice as large as those shown in Fig. 5-3. 

On interannual time scales the ocean adjustment to a deeper-than-average Aleutian Low 

is characterized by decreased SST (~0.5°C) in the central and western Pacific (Fig. 5-

3c). This is related to increased advection of cool and dry air from the north (Fig. 5-1c) 

and enhanced wind speeds (Fig. 5-1c), which cause an increase of ocean-to-atmosphere 

net heat fluxes (Fig. 5-3a), and strengthened equatorward temperature advection by 

Ekman currents (not shown) driven by cyclonic wind stress curl anomalies (Fig. 5-1e). 

In the eastern part of the basin, weakened winds (Fig. 5-1c) and increased northward 

ocean circulation (not shown) in relation to cyclonic wind stress curl anomalies (Fig. 5-

1e) lead to positive heat flux anomalies and warm anomalies of surface temperature 

(~0.5°C). Changes in surface heat fluxes and sea surface temperatures drive changes in 

mixed layer depth (hereafter MLD) which increases by over 60 m in the west and 

decreases of about the same value in the east (Fig. 5-3e). North of 50°N, increased SST 

is associated to MLD deepening: this is related to the increase of sea ice melting which 

leads to an expansion of the ice-free surface able to react to winter heat losses. This 

result is however partly biased by the model sea ice overestimation in this area during 

the XX century (Fig 2-7). The pattern of SST regression onto the first mode of SLP 

variability has very similar structure and magnitude with respect to the simulated PDO 
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(not shown), confirming the relevant atmospheric source in forcing SST variability on 

interannual time scales.  

 

 

Fig. 5-3 XX century JFM climatologies (contours) and JFM regressions (colors) with the first 

(left) and second (right) mode of sea level pressure variability of (a,b) net surface heat fluxes 

(NET) in W m
-2

, (c-d) sea surface temperature (SST) in °C, (e-f) mixed layer depth (MLD) in 

m.  
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Fig. 5-4 XX century variance explained (%) by the first (left) and second (right) principle 

component time series (PC) of sea level pressure variability; (a,b) net surface heat fluxes 

(NET), (c-d) sea surface temperature (SST), (e-f) mixed layer depth (MLD). Note the different 

color scale of panels (a,b). 

During positive NPO phases changes in wind speed and direction (Fig. 5-1d) are tightly 

linked to net surface heat flux modifications (Fig. 5-3b). The SST response (Fig. 5-3d) 

is connected to surface heat flux changes and is characterized by simultaneous decreases 

at ~45°N (0.6°C) and in the eastern part of the basin (0.2-0.3°C) and increases at ~30°N 
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in the western part of the basin (~0.3°C). The MLD responds to the modified 

atmospheric forcing by increasing by more than 30 m at middle and subpolar latitudes 

except near the coast. 

In Fig. 5-4, explained variance of net surface heat fluxes, SST and MLD by the first and 

second mode of sea level pressure variability is shown in Fig. 5-4. It may be seen that in 

the central Pacific changes in the Aleutian Low strength are dominant (variance 

explained >80% for surface heat fluxes, 30-50% for SST and MLD), whereas the NPO 

explains less ocean variance (10-20%) and in complementary regions with respect to 

areas of influence of the Aleutian Low. 

Similarly to what found in Chapter 4 for the North Atlantic Ocean, chlorophyll 

interannual variability is tightly linked to winter MLD changes induced by wind 

fluctuations. Chlorophyll concentration, a proxy of phytoplankton biomass, is integrated 

throughout the euphotic layer depth and averaged over April-July (AMJJ) when its 

biomass and variance are largest. Regressions between AMJJ chlorophyll anomalies and 

the first and second PCs of winter SLP variability are shown in Fig. 5-5 in the XX and 

XXI centuries together with respective AMJJ chlorophyll climatology, whereas the 

variance explained by each mode is shown for the XX and XXI century in Fig. 5-6. 

Regression of chlorophyll AMJJ anomalies onto the SST PC time series yield broadly 

similar spatial patterns (not shown). 

In the XX century, when the winter Aleutian Low is deeper-than-average, the 

subsequent spring months exhibit an enhanced phytoplankton bloom 20-30% higher 

than the climatological values simulated in the central part of the basin between 30°-

45°N (Fig. 5-5a, colors). This is due to the f deeper mixing (Fig. 5-3e) which entrains 

more nutrients to the surface in the winter period (not shown). By comparison with 

AMJJ climatology (Fig. 5-5a, contours) it can be seen that during positive index phases 

the spring bloom exhibits a southward shift. Along the northwestern edge of the basin, 

chlorophyll increases by ~10% because of increased ice-free zones. Conversely, the 

spring bloom is diminished in magnitude by 10-20% in the Alaskan Gyre. The 

chlorophyll variance explained by changes in the Aleutian Low exceeds 50% over large 

parts of the central Pacific and Alaskan Gyre (Fig. 5-6a). 
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Fig. 5-5 XX century (top) and XXI century (bottom) April-July (AMJJ) euphotic-depth-

integrated chlorophyll concentration in mg m
-2

. Contours: AMJJ climatology; colors: regression 

onto the (a) first and (b) second principle component (PC) time series of JFM sea level pressure 

anomalies.  

In the XX century, increased westerlies associated with positive NPO phases lead to 

deeper winter mixing at subpolar latitudes causing an enhancement of the 

phytoplankton bloom in the following spring (Fig. 5-5b, colors) because of higher 

nutrient entrainment into the euphotic layer (not shown). By comparison with 

climatological values (Fig. 5-5b, contours) it may be seen that chlorophyll concentration 

is about 10% higher in the open ocean subpolar gyre and that the spatial structure of the 

spring bloom is not significantly modified. The decrease in chlorophyll along subarctic 

coastal areas could be biased by the fact that climatological sea ice extent in this model 

is overestimated (Fig. 2-8). The chlorophyll variance explained by the NPO is ~20% 

(Fig. 5-6b), i.e. overall lower with respect to Aleutian Low fluctuations; however it is 

the dominant mode in explaining chlorophyll variance north of 45°N. 

In recent modeling studies marine biogeochemical consequences of the North Pacific 

1976-1977 regime shift, in which the Pacific Decadal Oscillation entered in a 

predominantly positive phase (Hare and Mantua, 2000), were investigated by means of 

physical-biogeochemical ocean models forced with observed atmospheric fields. Chai et 

al. (2003) find that subsequent to the 1976-1977 climate shift surface nitrate and 
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chlorophyll concentrations increased by 10-50% in the central North Pacific thanks to a 

combination of winter mixed layer deepening and upward Ekman pumping 

enhancement. On the other hand, Alexander et al. (2008) find in the central Alaskan 

Gyre that enhanced upward Ekman pumping during positive PDO phases causes the 

halocline and the mixed layer to shoal: this leads to an earlier start of the spring 

phytoplankton bloom with biomasses ~40% lower because of increased zooplankton 

grazing pressure. The results found in these forced-ocean studies agree well with the 

coupled-model results found in the present analysis. 

In observational biogeochemical data sets off the Californian coast, Di Lorenzo et al. 

(2008, 2009) find that nutrient and phytoplankton variability is mainly explained by the 

NPGO, connected to the second mode climatic variability in the Northeast Pacific, 

rather than by the PDO. The authors find that relevant physical mechanisms driving 

biogeochemical variability are wind-driven upwelling and horizontal advection. These 

processes do not appear to be captured in the present study. However the model appears 

to successfully capture the large-scale features of chlorophyll variability connected with 

the second mode of climate variability in the North Pacific when compared with 

SeaWiFS satellite data (Di Lorenzo et al., in prep. 

http://eros.eas.gatech.edu/npgo/slides/npgo_ecosys.png).   

When computing the same analysis on the XXI century simulation (Fig. 5-5 c,d), it may 

be seen that global warming does not impact the spatial structures of the chlorophyll 

anomalies, even though the amplitude and the percentage of variance explained by the 

first mode of variability is slightly diminished (Fig. 5-6 c,d). It may therefore be 

concluded that in this coupled simulation the spatial structures and amplitudes 

associated with atmospheric climatic indexes remain broadly stationary between XX 

and XXI centuries. 
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Fig. 5-6 XX century (top) and XXI century (bottom) April-July (AMJJ) euphotic-depth 

integrated chlorophyll concentration: variance explained by the (a,c) first and (b,d) second 

principle component (PC) time series of JFM sea level pressure anomalies.  

5.3.2 Anthropogenic impacts 

The physical response to increased atmospheric greenhouse gases is analyzed by taking 

the differences between the last 30 years of the XXI and XX century (Fig. 5-7). The 

model simulates an increase in JFM sea surface temperatures (Fig. 5-7a) up to 5°C in 

the central North Pacific, which is in the range of other coupled model projections for 

the end of XXI century (Meehl et al., 2007). JFM sea surface salinity (Fig. 5-7b) 

increases in the central Pacific of 0.2-0.4 because of enhanced evaporation (not shown), 

whereas it decreases in the eastern portion of the basin in connection with sea ice 

melting freshwater anomalies being advected by the mean circulation (Fig. 2-5). 

Associated with surface temperature and salinity changes, the JFM MLD shoals by 

more than 100 m (~50% with respect to climatology) north of 45°N and slightly 

deepens (up to 20 m) in the central subtropical gyre; on the northwestern edge of the 

basin JFM mixed layer increases because of the exposure of formerly sea-ice-covered 

regions. 
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Fig. 5-7 Differences between the last 30 years of the XXI and XX centuries (colors) and 

climatology of the last 30 years of the XX century (contours) of (a) JFM sea surface 

temperature (SST) in °C, (b) JFM sea surface salinity, (c) JFM mixed layer depth (MLD) in m, 

(d) JFM winds (arrows) and total wind speed (colors) at 10 m height. 

Under increased CO2 levels, wind patterns show intensification and northward shift of 

mid-latitude surface westerlies. Other coupled modeling studies have shown an 

intensification of the mid-latitude westerly jet in XXI century climate models (Ihara and 

Kushnir, 2009) possibly related to enhanced meridional temperature gradients at the 

troposphere-stratosphere boundary as proposed by Lorenz and DeWeaver (2007).  

When comparing wind variability associated to natural climate oscillations with 

anthropogenic wind changes (Fig. 5-1c and d), it may be seen that associated wind 

speed anomalies are of similar magnitude, even though spatial patterns are considerably 

different. From Fig. 5-7c it may also be seen that MLD modifications in the subpolar 

gyre are mostly caused by buoyancy changes related to increased temperature and 

decreased salinity, which would overpower the increased wind speeds at mid-latitudes. 
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The differences between the last 30 years of the XXI and XX centuries of AMJJ 

chlorophyll concentration integrated in the euphotic layer are analyzed in terms of 

median changes (Fig. 5-8a), whose 95% statistical significance is tested through the 

non-parametric Wilcoxon test (Fig. 5-8b). This test is suitable for non-normally 

distributed time series, as in the case of chlorophyll concentration time series. The null 

hypothesis states that two samples come from a distribution with equal medians, and the 

grey shading shown in Fig. 5-8b indicates the areas where the null hypothesis can be 

rejected. Spring chlorophyll concentration in the subpolar gyre decreases significantly 

by ~50% in the XXI century with respect to the XX century, owing to decreased winter 

nutrient availability caused by increased stratification (Fig. 5-7c). The significant 

chlorophyll increases along the Siberian coast are related to increased sea ice melting 

which allows phytoplankton growth in areas formerly covered by sea ice. Slight, 

although statistical significant, chlorophyll increases occur in the subtropical gyre 

because of increased mixing, a result which disagrees with the observed trend in the last 

decade of the XX century (Polovina et al., 2008).  

Also the interannual variability of spring euphotic-depth-integrated chlorophyll changes 

between the last 30 years of the XX and XXI centuries (Fig. 5-8c) with magnitudes of 

~10 mg m
-2

. In order to test the statistical significance of variance changes between the 

time series, the Ansari-Bradley test is used. The null hypothesis states that the two 

samples come from the same distribution, against the alternative that they come from 

distributions that have the same median but different variance. Prior to computing the 

test, AMJJ chlorophyll values were detrended with their median value in order to obtain 

two samples with zero-median. Fig. 5-8d shows in grey shading the areas where the null 

hypothesis can be rejected at 95% confidence level. From figs. 3-8c and 3-8d, it may be 

seen that the variance of chlorophyll time series significantly decreases in the XXI with 

respect to the XX century decreases between 30°-45°N, in the Alaskan Gyre, and in the 

northwestern part of the basin; in an area in the central subpolar gyre chlorophyll 

variability instead increases, even though not significantly at a 95% confidence level. 
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Fig. 5-8 April-July (AMJJ) euphotic-depth-integrated chlorophyll concentration (CHL) in mg 

m
-2

. (a) Differences between XX and XXI century medians (colors) and XX century median 

(contours), (b) statistical significance at 95% (grey shading) of XX and XXI century median 

differences; (c) differences between XX and XXI century standard deviations (colors) and XX 

century standard deviation (contours), (d) statistical significance at 95% (grey shading) of XX 

and XXI century standard deviation differences. 

Changes in chlorophyll mean state and variability in XX and XXI centuries in 

connection to changes in the physical climate may clearly be seen on time series 

averaged over the subpolar North Pacific (45°-60°N, 150°E-130°W) shown in Fig. 5-9, 

and over the subtropical central North Pacific (20°-45°N, 160°E-130°W) shown in Fig. 

5-10. Over the subpolar gyre, JFM SST increases by up to 3°C by the end of the XXI 

century (Fig. 5-9a), associated with a decrease in JFM MLD (Fig. 5-9b) of several tens 

of meters. JFM MLD also shows a decrease in interannual variability, possibly caused 

by increased SST which stabilizes the water column and makes it more difficult for 

momentum fluxes to erode the ocean mixed layer.  

Spring (AMJJ) chlorophyll concentrations are shown both in terms of their integrated 

values over the euphotic layer depth, to allow comparison with Fig. 5-8, and in terms of 

their averaged values over the euphotic layer depth, to allow comparison with satellite 

SeaWiFS chlorophyll estimates shown for the years 1998-2006 with a blue line. As 
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discussed in Section 2.4, the coupled model exhibits a chlorophyll concentration 

decreasing trend especially in the first 200 years of the simulation which tends to be 

more stabilized during the following century (Figs 2-12a, Fig. 2-13). Since the first 50 

years of the XX century are characterized by relatively small atmospheric CO2 

variations with respect to the subsequent increases of the projected emission scenario 

(Fig. 2-2), it is here assumed that the chlorophyll decreasing trend shown between years 

1900-1949 is mainly due to the model internal drift and not to climate signals. The 

linear trend over those years is therefore computed (red line) and extrapolated also 

during the remaining time series. This can give an estimate of the error due to the model 

drift unrelated with climate forcing. The median difference between the AMJJ 

chlorophyll during the last 30 years of XX and XXI centuries is ~15 mg m
-2

. The 

associated error, estimated by subtracting the means of the linear trends (red line, 

dashed) of the last 30 years of XX and XXI centuries, is ~5 mg m
-2

.  

From Fig. 5-9d it may be seen that euphotic-depth-averaged chlorophyll concentrations 

are in the range of SeaWiFS satellite estimates, which are however available only for 

the years 1998-2006. Even though the time series is extremely short compared to the 

scales of the Earth system response to the anthropogenic perturbation, a trend is 

detected towards decreasing chlorophyll values, on which a large interannual fluctuation 

is superimposed. The similar behavior between model and observations may indicate 

that the subpolar chlorophyll response to both natural and anthropogenic impacts may 

be correctly captured by the coupled model simulation. 

Similar responses occur in the central Pacific (Fig. 5-10): JFM SST increases by ~3°C 

by the end of the XXI century and JFM MLD decreases slightly in magnitude and 

largely in variability. As a response to modified physical forcing, chlorophyll decreases 

by 3.3 mg m
-2

, with an estimated error related to the systematic trend of 1.2 mg m
-2

. 

Hence in the subtropical Pacific the estimated error amounts to a large part of the 

chlorophyll decrease, and thus could argue that the simulated chlorophyll trend is not 

climate-related. In addition this area shows a less intense physical forcing in the model, 

as temperature and salinity are counteracting each other and the MLD changes only 

slight. Indeed, the main impact of anthropogenic climate change in this area is a drastic 

reduction of chlorophyll interannual variability, in response decreased mixing 

variability (Fig. 5-10b). However these considerations have to taken with care as the 

model in this area underestimates the mean value and overestimates the amplitude of the 
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interannual oscillations when compared to 1998-2006 satellite SeaWiFS products (Fig. 

5-10d). 

 

 

Fig. 5-9 XX and XXI century time series averaged in the subpolar North Pacific (45°-60°N, 

150°E-130°W), of (a) sea surface temperature (SST) in °C, (b) mixed layer depth (MLD) in m, 

(c) euphotic-depth-integrated chlorophyll concentration (CHL) concentration in mg m
-2

 (grey), 

(d) euphotic-depth-averaged chlorophyll concentration (CHL) in mg m
-3

 (grey) and chlorophyll 

estimated from SeaWiFS satellite data for the years 1998-2006 (blue). In panels (c) and (d), the 

linear trend relative to the years 1900-1949 is shown  (red full line) and extended for reference 

also in remaining part of the time series (red dashed line). 
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Fig. 5-10 XX and XXI century time series averaged in the central North Pacific (20°-45°N, 

160°E-130°W), of (a) sea surface temperature (SST) in °C, (b) mixed layer depth (MLD) in m, 

(c) euphotic-depth-integrated chlorophyll concentration (CHL) concentration in mg m
-2

 (grey), 

(d) euphotic-depth-averaged chlorophyll concentration (CHL) in mg m
-3

 (grey) and chlorophyll 

estimated from SeaWiFS satellite data for the years 1998-2006 (blue). In panels (c) and (d), the 

linear trend relative to the years 1900-1949 is shown  (red full line) and extended for reference 

also in remaining part of the time series (red dashed line). 

Changes in climatological seasonal cycles during the last 30 years of the XX and XXI 

centuries are shown in Fig. 5-11. Both at subpolar and at subtropical latitudes, increased 

SSTs and stratification in the XXI century lead to a drastic reduction of the spring 

phytoplankton maximum (>50%) and to an earlier starting of the winter bloom period in 

the order of one month. These effects arise because of a combination of increased light 
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availability in winter, and decreased nutrient supply in the following months and 

possibly increased zooplankton grazing pressure during the following spring months. 

 

Fig. 5-11 Climatological seasonal cycles of euphotic-depth-averaged chlorophyll concentration 

computed over the last 30 years of XX century (blue line) and of the XXI century (red dashed 

line) over (left) the subpolar North Pacific (45°-60°N, 150°E-130°W) and (right) over the 

central North Pacific (20°-45°N, 160°E-140°W). 

When comparing the magnitude of the chlorophyll anomalies induced by natural 

variability (Section 5.3.1) and by global warming trends, we can make the following 

considerations: (1) Interannual chlorophyll fluctuations range between 4-10 mg m
-2

 

when the PC index value is equal to 1; (2) a strong event having index values around 2 

(Fig. 5-2) will generate chlorophyll anomalies about twice as high (~8-20 mg m
-2

); (3) 

chlorophyll changes induced by global warming range between 20-40 mg m
-2

. Thus 

interannual fluctuations are lower and on average represent 10% to 50% of projected 

global warming impacts predicted by this model. However strong interannual wind 

fluctuations produce chlorophyll anomalies which fall in the range of those projected to 

occur in an anthropogenic A1B emission scenario. This behavior can also be seen in the 

time series shown in Figs. 5-8 and 5-9, where decadal variations due to natural 

oscillations may in cause amplification or weakening of the anthropogenic signal. This 

study shows that care must thus be taken in attributing chlorophyll trends computed on 

short periods to anthropogenic impacts. 
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5.4 Conclusions 

This study addressed the impacts on North Pacific marine biogeochemistry of natural 

climatic fluctuations and anthropogenic climate change induced by increased CO2 

emissions. To this end a coupled model containing interactive marine biogeochemistry 

is used to produce a XX century simulation forced with observed atmospheric 

greenhouse gas concentrations, and a XXI century simulation forced with the IPCC 

SRES A1B scenario of greenhouse gases increase.  

The dominant modes of winter climate variability in both the XX and XXI centuries are 

found to be related with (1) fluctuations of the Aleutian Low strength and (2) with a 

redistribution of atmospheric mass between subtropical and subpolar latitudes, referred 

to as the North Pacific Oscillation. Associated variations in wind speed and direction 

modify ocean temperatures and mixing through changes in surface heat fluxes. These 

climate fluctuations are found to explain a large part of the variability of phytoplankton 

spring blooms. In particular, when the Aleutian Low is strong, spring chlorophyll 

increases by 20-30% in the central Pacific and decreases in the Alaskan Gyre. When 

subpolar-subtropical pressure gradients are strong, chlorophyll is enhanced by ~10% at 

subpolar latitudes. 

In the coupled model, increased greenhouse gases in the XXI century raise sea surface 

temperatures by up to 5°C in the subpolar North Pacific, with a consequent 

enhancement of stratification by up to 50%. This has significant impacts on the North 

Pacific phytoplankton spring bloom, which at the end of the XXI century is shifted one 

month earlier and with magnitudes 50% lower than in the XX century. Moreover, 

increased upper-ocean temperatures significantly reduce the magnitude chlorophyll 

interannual fluctuations on large portions of the North Pacific. This study however also 

shows that the variances explained by the first and second modes of atmospheric 

variability, and their impact on the chlorophyll spring bloom, do not substantially 

change between XX and XXI centuries. 

Concluding, human-induced impacts on the physical environment are the largest source 

of marine biogeochemical variation, with natural climate fluctuations amounting on 

average to 10-50% of the human-induced changes. However it has to be remarked that 

strong interannual wind fluctuations may produce chlorophyll anomalies which fall in 

the range of those projected to occur in an anthropogenic A1B emission scenario. This 
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result shows that care must thus be taken when attributing chlorophyll trends computed 

on short time series to anthropogenic climate change. 

This PhD thesis advances the knowledge of bio-physical interactions within the global 

climate, highlighting the intrinsic coupling between physical climate and biosphere, and 

providing a framework on which future studies of Earth System change can be built on. 
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Chapter 6 

Conclusions  

In this PhD thesis I focused on the study of two-way interactions between climate and 

marine biogeochemistry in a global climate model. Within the vast range of bio-

physical interactions occurring within the Earth System, I analyzed some particular 

aspects which are believed to be relevant in understanding the Earth’s climate 

functioning and its temporal evolution. These are (1) the climate feedbacks of the solar 

radiation absorption by phytoplankton, (2) the physical and biogeochemical ocean 

responses to the North Atlantic Oscillation, and (3) the response of marine 

biogeochemistry to natural climate fluctuations and to anthropogenic climate forcing in 

the North Pacific Ocean. 

Prior to addressing these studies, I assessed whether the coupled model had sufficient 

skill at simulating the salient features of the present climate state. Coupled climate 

models are powerful tools for simulating the interactive evolution of the atmosphere-

ocean-sea ice system, yet they are affected by errors that may hinder a correct 

representation of natural processes. I devoted a part of Chapter 2 to a comparative 

analysis of the model skills and errors with available observational data sets. The 

climate model was found to capture the prominent characteristics of the large-scale 

atmospheric, oceanic, and marine biogeochemical properties, and this has motivated me 

in continuing my analysis of interactions between climate and marine biogeochemistry. 

Modeling results obtained throughout the thesis have however been interpreted and 

discussed in consideration of the errors of the coupled model. 

In Chapter 3, I addressed the scientific question of whether phytoplankton organisms, 

which are ubiquitous in the global ocean, are capable of affecting the physical climate in 

the process of absorbing solar radiation for their photosynthetic reactions. In fact this 

process heats the surrounding environment and modifies the radiative and thermal 

budget of the upper ocean. Such bio-optical feedbacks may be relevant for global 

climate, as phytoplankton organisms are virtually ubiquitous and dwell in the upper 

ocean layers in strong contact with the atmosphere.  
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To address the role of biological radiative heating onto the global climate, I performed 

and compared two fully coupled simulations: one containing both physical and 

biological components of the coupled model, the other containing only the physical 

components. The model results show that phytoplankton warms the ocean surface and 

raises sea surface temperatures of about 0.5°C. This triggers various dynamically 

coupled oceanic and atmospheric responses involving changes in stratification, wind 

patterns, precipitation, incoming solar radiation, and ocean circulation. In addition, 

increased evaporative heat fluxes from the ocean surface result in an increase of 

atmospheric water vapor. This process exerts a positive feedback onto global 

temperatures and suggests that marine biogeochemistry may contribute to a small part 

of the Earth’s greenhouse effect.   

This analysis showed that phytoplankton may indeed give rise to a climatic effect by 

means of its capability of absorbing solar radiation. Bio-optical feedbacks may therefore 

interact with other sources of climate variability, such as natural climate fluctuations 

and anthropogenic climate change. It is instructive to compare the magnitude of bio-

optical feedbacks with natural and anthropogenic climate variations, which I addressed 

in Chapters 4 and 5. Impacts of anthropogenic warming, as simulated under the A1B 

scenario, are the largest source of oceanic variation, whereas impacts of natural 

fluctuations and of bio-optical feedbacks are about an order of magnitude smaller. This 

comparative analysis of different climatic perturbations may be useful in deciding 

whether to add the marine biogeochemistry compartment to climate model simulations 

in order for bio-optical feedbacks to be explicitly represented. 

In Chapters 4 and 5 I focused on the study the climate forcing of on marine 

biogeochemistry. In particular I analyzed effects of the primary modes of atmospheric 

variability on the North Atlantic (Chapter 4) and in the North Pacific (Chapter 5), and 

the impacts of the anthropogenic emission scenario A1B of the IPCC for the 21
st
 

century (Chapter 5). I focused on the northern hemisphere – rather than on the southern 

hemisphere - because there a larger quantity of observational data is available for the 

assessment of model results. I extrapolated the modes of atmospheric variability of the 

simulated climate by means of Empirical Orthogonal Function analysis on winter sea 

level pressure fields, and the response to the climatic fluctuations was investigated 

mainly through regression analysis on the obtained principal component time series.  
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The physical and biogeochemical ocean responses to the North Atlantic Oscillation 

(NAO) were analyzed on the 200-year simulation performed with the fully coupled 

model under constant greenhouse gases typical of present climate conditions (CO2 = 348 

ppm). When compared to observational data sets, the climate model was found to be 

capable of internally generating NAO-like variability and of reproducing the main 

features of the North Atlantic Ocean response to NAO interannual fluctuations. The 

North Atlantic Oscillation involves a north-south redistribution of atmospheric mass 

and is linked, though changes in the wind field, to coherent out-of-phase sea surface 

temperature changes between middle and subpolar latitudes. The marine 

biogeochemistry responses to NAO fluctuations were consequently assessed. Marine 

biogeochemistry is found to mainly respond to NAO-induced changes in winter mixing, 

which influence the phytoplankton growth through light and limitation mechanisms. An 

increase in winter mixing in the subpolar gyre (positive index phase) causes on annual 

average increased values of phytoplankton, zooplankton, particulate organic matter 

production, and air-sea CO2 fluxes of 10-20% with respect to climatology. A possible 

future direction of this study would be assessing the effective carbon sequestration 

changes related to the NAO in the North Atlantic, which is one of the largest carbon 

sinks in the northern hemisphere. 

An aspect I wished to investigate was whether in the coupled model the ocean system 

(physical and biogeochemical) was capable of keeping memory of meteorological 

forcing in years subsequent to an NAO event. I therefore analyzed the lagged 

correlations between NAO index and ocean time series and found that temperature 

anomalies persist up to 3 years after their generation, similarly to what found in ocean 

reanalyses. Moreover they appear to propagate from their source region in successive 

years apparently following major current systems. In contrast, marine biogeochemistry 

had limited memory of interannual NAO forcing which brought me to hypothesize that 

in this model biogeochemical variability was mainly governed by interannual 

fluctuations of vertical mixing having very short decorrelation time scales. The behavior 

of the ocean physics instead suggested a memory of the interannual NAO signal which I 

therefore further investigated with a low-frequency analysis of the ocean responses. It is 

found, in agreement with previous modeling and observational studies, that under a low-

frequency persistency of NAO phases, ocean circulation adjusts to the modified wind 

stress curl field, influencing the ocean temperature, salinity, and mixing, and marine 
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biogeochemistry as well. Finally, this study also shows that ocean anomalies generated 

on decadal time scales persist also when NAO forcing ceases, re-confirming the 

capability of the ocean of integrating the atmospheric signal over time.  

Having detected in the North Atlantic a multitude of physical and biogeochemical ocean 

responses to physical climate forcing, I next turned in Chapter 5 to investigating 

biogeochemical variability in the North Pacific Ocean in present climate and a future 

scenario of anthropogenic emissions. To this end I used another set of centennial 

simulations performed within the ENSEMBLES project in which global climate was 

forced by historical measurements and the A1B future projection of atmospheric 

radiatively-active gases. My aim was investigating how responses of marine 

biogeochemistry to natural and anthropogenic forcings were comparatively different in 

terms of magnitude and spatial structures. To my knowledge this topic has not been 

addressed in previous coupled modeling studies; yet it is an important one, as in the 

short available observational time series it is not always clear whether the observed 

changes are due to anthropogenic forcing or to natural variability cycles. 

The two dominant modes of winter atmospheric variability in the 20th and 21st 

centuries are involve fluctuations of the sea level pressure fields according to a specific 

spatial structure. The first mode, explaining the largest atmospheric variance in winter, 

involves fluctuations of the Aleutian Low strength and has its oceanic counterpart in the 

well-known Pacific Decadal Oscillation. The second mode involves a redistribution of 

atmospheric mass between subtropical and subpolar latitudes, similarly to the NAO, and 

has also recently been found to have distinctive oceanic responses. Associated wind 

changes affect ocean temperature and mixing with impacts on the phytoplankton spring 

bloom. In particular the first mode of atmospheric variability causes 20-30% 

chlorophyll changes according to an east-west dipole; the second forces ~10% 

chlorophyll changes according to a north-south dipole. 

The impact on marine biogeochemistry of increased atmospheric greenhouse gases in a 

projected future climate was subsequently analyzed. The model simulation shows that 

increased atmospheric CO2 levels produce in the North Pacific sea surface temperatures 

up to 5°C higher with respect to the 20th century, which substantially reduce ocean 

mixing and its interannual variability. These environmental changes cause a 

statistically-significant 50% decrease in the subpolar gyre spring phytoplankton bloom 

and reduced chlorophyll interannual variability on most of the basin; the variance 
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explained by the two dominant modes of atmospheric variability remains nonetheless 

virtually unchanged in the 20th  and 21st century.  

These results suggest that in the North Pacific human-induced impacts on the physical 

environment are the largest source of marine biogeochemical variation, whereas natural 

climate fluctuations amount on average to 10-50% of the human-induced changes. 

However it has to be remarked that higher-than-average climatic fluctuations may 

produce chlorophyll anomalies which fall in the range of those projected to occur in an 

anthropogenic A1B emission scenario. I therefore concluded that care must thus be 

taken when attributing to anthropogenic climate change the chlorophyll trends extracted 

from short-term time series, as they could instead originate from natural climate 

fluctuations. 
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 and (e,f) sea surface salinity (SSS). 

Fig. 4-16 In-phase (top) and in-quadrature (bottom) response to NAO+ low-frequency phases of 

(a,b) sea surface in cm (colors) and horizontal currents averaged between 40-100 m depth. 

Fig. 4-17 In-phase response to low-frequency NAO+ phases of (a) mixed layer depth (m), (b) 

euphotic-depth-integrated phosphate concentration (mmol m
-2

), (c) euphotic-depth-integrated 

chlorophyll concentration (mg m
-2

), (d) sea-air CO2 fluxes in mol m
-2 

year
-1

. 

Fig. 4-18 Schematic diagram of processes affecting subpolar gyre air-to-sea CO2 fluxes and 

production of particulate organic matter during positive (NAO+) and negative (NAO-) phases. 

Chapter 5 

Fig. 5-1 XX century JFM sea level pressure (hPa) regressed onto the first (c) and second (d) 

principle component (PC) time series of JFM SLP anomalies with winter climatology plotted in 

contours for reference; JFM wind velocity (m sec
-1

) at 10 m height regressed onto the first (c) 

and second (d) PC time series of JFM SLP anomalies; JFM wind stress curl (1×10
-7

 N m
-3

) 

regressed onto the first (e) and second (f) PC time series of JFM SLP anomalies. For 

construction these maps show anomalies relative to index values equal to1. 

Fig. 5-2 (a) First (PC1, light grey) and (b) second (PC2, dark grey) PC time series of JFM SLP 

anomalies during the XX and XXI centuries (bars). (c) First (PC1, light grey) and (d) second 

(PC2, dark grey) PC time series of JFM SST anomalies during the XX and XXI centuries (bars). 

Red lines indicate 9-year running averages and numbers indicate the variance explained by each 

mode during the XX and XXI centuries. 

Fig. 5-3 XX century JFM climatologies (contours) and JFM regressions (colors) with the first 

(left) and second (right) mode of sea level pressure variability of (a,b) net surface heat fluxes 

(NET) in W m
-2

, (c-d) sea surface temperature (SST) in °C, (e-f) mixed layer depth (MLD) in 

m. 

Fig. 5-4 XX century variance explained (%) by the first (left) and second (right) principle 

component time series (PC) of sea level pressure variability; (a,b) net surface heat fluxes 

(NET), (c-d) sea surface temperature (SST), (e-f) mixed layer depth (MLD). Note the different 

color scale of panels (a,b). 

Fig. 5-5 XX century (top) and XXI century (bottom) April-July (AMJJ) euphotic-depth-

integrated chlorophyll concentration in mg m
-2

. Contours: AMJJ climatology; colors: regression 

onto the (a) first and (b) second principle component (PC) time series of JFM sea level pressure 

anomalies. 

Fig. 5-6 XX century (top) and XXI century (bottom) April-July (AMJJ) euphotic-depth 

integrated chlorophyll concentration: variance explained by the (a,c) first and (b,d) second 

principle component (PC) time series of JFM sea level pressure anomalies. 

Fig. 5-7 Differences between the last 30 years of the XXI and XX centuries (colors) and 

climatology of the last 30 years of the XX century (contours) of (a) JFM sea surface 

temperature (SST) in °C, (b) JFM sea surface salinity, (c) JFM mixed layer depth (MLD) in m, 

(d) JFM winds (arrows) and total wind speed (colors) at 10 m height. 
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Fig. 5-8 April-July (AMJJ) euphotic-depth-integrated chlorophyll concentration (CHL) in mg 

m
-2

. (a) Differences between XX and XXI century medians (colors) and XX century median 

(contours), (b) statistical significance at 95% (grey shading) of XX and XXI century median 

differences; (c) differences between XX and XXI century standard deviations (colors) and XX 

century standard deviation (contours), (d) statistical significance at 95% (grey shading) of XX 

and XXI century standard deviation differences. 

Fig. 5-9 XX and XXI century time series averaged in the subpolar North Pacific (45°-60°N, 

150°E-130°W), of (a) sea surface temperature (SST) in °C, (b) mixed layer depth (MLD) in m, 

(c) euphotic-depth-integrated chlorophyll concentration (CHL) concentration in mg m
-2

 (grey), 

(d) euphotic-depth-averaged chlorophyll concentration (CHL) in mg m
-3

 (grey) and chlorophyll 

estimated from SeaWiFS satellite data for the years 1998-2006 (blue). In panels (c) and (d), the 

linear trend relative to the years 1900-1949 is shown  (red full line) and extended for reference 

also in remaining part of the time series (red dashed line). 

Fig. 5-10 XX and XXI century time series averaged in the central North Pacific (20°-45°N, 

160°E-130°W), of (a) sea surface temperature (SST) in °C, (b) mixed layer depth (MLD) in m, 

(c) euphotic-depth-integrated chlorophyll concentration (CHL) concentration in mg m
-2

 (grey), 

(d) euphotic-depth-averaged chlorophyll concentration (CHL) in mg m
-3

 (grey) and chlorophyll 

estimated from SeaWiFS satellite data for the years 1998-2006 (blue). In panels (c) and (d), the 

linear trend relative to the years 1900-1949 is shown  (red full line) and extended for reference 

also in remaining part of the time series (red dashed line). 

Fig. 5-11 Climatological seasonal cycles of euphotic-depth-averaged chlorophyll concentration 

computed over the last 30 years of XX century (blue line) and of the XXI century (red line) over 

(left) the subpolar North Pacific (45°-60°N, 150°E-130°W) and (right) over the central North 

Pacific (20°-45°N, 160°E-140°W). 
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