95 research outputs found
OLS data system/global survey of lightning
A global lightning climatology is being assembled from the nighttime imagery of the DMSP Optical Linescan Sensor (OLS). Lightning saturates the visible channel of the OLS at nighttime and can be identified as a horizontal streak on the order of 50-100 km in horizontal extent. Lightning streaks apparent in the film strips located at the National Snow and Ice Data Center (NSIDC) prior to 1991 are being digitized. An initial survey was completed for the F7 satellite observation period January 1986 - October 1987 and for the Q satellite for the period June-July 1973. Comparisons between the OLS lightning climatology with the Arkin GPI data set during the 1986-87 El Nino event shows similar regional variations in convective activity. The digital archive of global DMSP data began at the end of February. Software is being developed at both MSFC and NSIDC to extract, navigate, and view the OLS fine and smooth imagery
Estimating exclusion: a tool to help designers
An exclusion audit assesses how inclusive a product or service is. This is useful for
comparing designs and identifying points for improvement. In an exclusion audit, the
designer or usability expert identifies the demands a product places on the user‟s
capabilities and enters these into an exclusion calculator. This software then estimates
the proportion of the adult British population who would be excluded from using the
product because their capabilities do not meet these demands.
This paper describes research on improving the exclusion calculator based on a
recent reanalysis of the calculator‟s underlying dataset. This enabled the capabilities to
be broken down into more specific sub-categories or “demand types”. An experiment
investigated the use of these demand types in the context of an exclusion audit. It found
that participants could determine the demand type of an action consistently, in the
majority of cases. This approach was adopted in a redesign of the calculator, described
in this paper
Reductions in cardiovascular, cerebrovascular, and respiratory mortality following the national Irish smoking ban: Interrupted time-series analysis
Copyright @ 2013 Stallings-Smith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Previous studies have shown decreases in cardiovascular mortality following the implementation of comprehensive smoking bans. It is not known whether cerebrovascular or respiratory mortality decreases post-ban. On March 29, 2004, the Republic of Ireland became the first country in the world to implement a national workplace smoking ban. The aim of this study was to assess the effect of this policy on all-cause and cause-specific, non-trauma mortality. Methods: A time-series epidemiologic assessment was conducted, utilizing Poisson regression to examine weekly age and gender-standardized rates for 215,878 non-trauma deaths in the Irish population, ages ≥35 years. The study period was from January 1, 2000, to December 31, 2007, with a post-ban follow-up of 3.75 years. All models were adjusted for time trend, season, influenza, and smoking prevalence. Results: Following ban implementation, an immediate 13% decrease in all-cause mortality (RR: 0.87; 95% CI: 0.76-0.99), a 26% reduction in ischemic heart disease (IHD) (RR: 0.74; 95% CI: 0.63-0.88), a 32% reduction in stroke (RR: 0.68; 95% CI: 0.54-0.85), and a 38% reduction in chronic obstructive pulmonary disease (COPD) (RR: 0.62; 95% CI: 0.46-0.83) mortality was observed. Post-ban reductions in IHD, stroke, and COPD mortalities were seen in ages ≥65 years, but not in ages 35-64 years. COPD mortality reductions were found only in females (RR: 0.47; 95% CI: 0.32-0.70). Post-ban annual trend reductions were not detected for any smoking-related causes of death. Unadjusted estimates indicate that 3,726 (95% CI: 2,305-4,629) smoking-related deaths were likely prevented post-ban. Mortality decreases were primarily due to reductions in passive smoking. Conclusions: The national Irish smoking ban was associated with immediate reductions in early mortality. Importantly, post-ban risk differences did not change with a longer follow-up period. This study corroborates previous evidence for cardiovascular causes, and is the first to demonstrate reductions in cerebrovascular and respiratory causes
Estimating the Exposure–Response Relationships between Particulate Matter and Mortality within the APHEA Multicity Project
Several studies have reported significant health effects of air pollution even at low levels of air pollutants, but in most of theses studies linear nonthreshold relations were assumed. We investigated the exposure–response association between ambient particles and mortality in the 22 European cities participating in the APHEA (Air Pollution and Health—A European Approach) project, which is the largest available European database. We estimated the exposure–response curves using regression spline models with two knots and then combined the individual city estimates of the spline to get an overall exposure–response relationship. To further explore the heterogeneity in the observed city-specific exposure–response associations, we investigated several city descriptive variables as potential effect modifiers that could alter the shape of the curve. We conclude that the association between ambient particles and mortality in the cities included in the present analysis, and in the range of the pollutant common in all analyzed cities, could be adequately estimated using the linear model. Our results confirm those previously reported in Europe and the United States. The heterogeneity found in the different city-specific relations reflects real effect modification, which can be explained partly by factors characterizing the air pollution mix, climate, and the health of the population
Paramedic clinical decision making during high acuity emergency calls: design and methodology of a Delphi study
<p>Abstract</p> <p>Background</p> <p>The scope of practice of paramedics in Canada has steadily evolved to include increasingly complex interventions in the prehospital setting, which likely have repercussions on clinical outcome and patient safety. Clinical decision making has been evaluated in several health professions, but there is a paucity of work in this area on paramedics. This study will utilize the Delphi technique to establish consensus on the most important instances of paramedic clinical decision making during high acuity emergency calls, as they relate to clinical outcome and patient safety.</p> <p>Methods and design</p> <p>Participants in this multi-round survey study will be paramedic leaders and emergency medical services medical directors/physicians from across Canada. In the first round, participants will identify instances of clinical decision making they feel are important for patient outcome and safety. On the second round, the panel will rank each instance of clinical decision making in terms of its importance. On the third and potentially fourth round, participants will have the opportunity to revise the ranking they assigned to each instance of clinical decision making. Consensus will be considered achieved for the most important instances if 80% of the panel ranks it as important or extremely important. The most important instances of clinical decision making will be plotted on a process analysis map.</p> <p>Discussion</p> <p>The process analysis map that results from this Delphi study will enable the gaps in research, knowledge and practice to be identified.</p
Socioeconomic differentials in the immediate mortality effects of the national Irish smoking ban
This article has been made available through the Brunel Open Access Publishing Fund.Background: Consistent evidence has demonstrated that smoking ban policies save lives, but impacts on health inequalities are uncertain as few studies have assessed post-ban effects by socioeconomic status (SES) and findings have been inconsistent. The aim of this study was to assess the effects of the national Irish smoking ban on ischemic heart disease (IHD), stroke, and chronic obstructive pulmonary disease (COPD) mortality by discrete and composite SES indicators to determine impacts on inequalities. Methods: Census data were used to assign frequencies of structural and material SES indicators to 34 local authorities across Ireland with a 2000–2010 study period. Discrete indicators were jointly analysed through principal component analysis to generate a composite index, with sensitivity analyses conducted by varying the included indicators. Poisson regression with interrupted time-series analysis was conducted to examine monthly age and gender-standardised mortality rates in the Irish population, ages ≥35 years, stratified by tertiles of SES indicators. All models were adjusted for time trend, season, influenza, and smoking prevalence. Results: Post-ban mortality reductions by structural SES indicators were concentrated in the most deprived tertile for all causes of death, while reductions by material SES indicators were more equitable across SES tertiles. The composite indices mirrored the results of the discrete indicators, demonstrating that post-ban mortality decreases were either greater or similar in the most deprived when compared to the least deprived for all causes of death. Conclusions: Overall findings indicated that the national Irish smoking ban reduced inequalities in smoking-related mortality. Due to the higher rates of smoking-related mortality in the most deprived group, even equitable reductions across SES tertiles resulted in decreases in inequalities. The choice of SES indicator was influential in the measurement of effects, underscoring that a differentiated analytical approach aided in understanding the complexities in which structural and material factors influence mortality
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
- …