689 research outputs found

    Pr?cticas de intimidaci?n escolar en la Instituci?n Educativa T?cnica Carlos Lleras Restrepo sede Ibagu?

    Get PDF
    106 p. Recurso ElectronicoLa presente investigaci?n tiene como prop?sito establecer las consecuencias de los actos de acoso escolar en los estudiantes de la Instituci?n Educativa T?cnica Carlos Lleras Restrepo de la ciudad de Ibagu?, determinando las pr?cticas de acoso escolar m?s comunes, sus estrategias de y los efectos inmediatos en los estudiantes v?ctimas de las pr?cticas de intimidaci?n que se suceden al interior del plantel educativo. Es un trabajo investigativo de car?cter descriptivo de corte transversal y enfoque cuantitativo porque se centra en el conteo y clasificaci?n de caracter?sticas de acoso escolar, para lo cual se aplicaron dos cuestionarios, uno dirigido a los estudiantes de los grados d?cimo y once y otro orientado hacia los profesores directores de grado y pasantes de dichos cursos. Entre los resultados m?s destacados se constata que en la instituci?n educativa tienen lugar todos los tipos de acoso, desde la m?s leve a la alta frecuencia, pero sobresale la agresi?n verbal y f?sica directa e indirecta junto con la exclusi?n social, siendo el patio de recreo y el aula de clases los escenarios preferidos para estas conductas agresivas. Las estrategias de prevenci?n del acoso se centran prioritariamente en sensibilizar al personal docente, concientizar a la comunidad educativa, la aplicaci?n de sanciones estrictas al agresor o el di?logo y llegar a acuerdos de no agresi?n. En cuanto a las consecuencias inmediatas se determina la p?rdida de la autoestima, los trastornos f?sicos o psicosom?ticos, la ansiedad y el ausentismo colegial y, a largo plazo, problemas psicol?gicos permanentes, depresi?n cr?nica, y comportamientos autodestructivos. Por todo, proporciona informaci?n ?til a toda la comunidad educativa para mejorar el conocimiento sobre el alcance del problema del acoso en la instituci?n y las formas de prevenirlo. Palabras Clave: acoso escolar, bullying, pr?cticas de intimidaci?n, convivencia escolar, ciberacosoThe purpose of this research is to establish the consequences of the acts of bullying in the students of the Carlos Lleras Restrepo Technical educational institution of the city of Ibague, determining the most common bullying practices, their Strategies and immediate effects on student?s victims of bullying practices that occur within the educational campus. It is a descriptive investigative work of cross-cutting and quantitative focus because it focuses on the counting and classification of bullying characteristics, for which two questionnaires were applied, one aimed at students of the grades Tenth and eleven and another oriented towards the professors of grade and interns of these courses. Among the most notable results, it is noted that in the educational institution all types of harassment take place, from the slightest to the high frequency, but the direct and indirect physical and verbal aggression with the social exclusion stands out, being the patio of Recreation and classroom the preferred scenarios for these aggressive behaviors. Harassment prevention strategies focus primarily on sensitizing teachers, raising awareness to the educational community, applying strict penalties to the aggressor or dialogue, and reaching non-aggression agreements. In terms of immediate consequences, the loss of self-esteem, physical or psychosomatic disorders, anxiety and collegiate absenteeism and, in the long term, permanent psychological problems, chronic depression, and behaviors are determined. Destructive. For everything, it provides useful information to the entire educational community to improve awareness of the extent of the problem of bullying in the institution and ways to prevent it. Keywords: bullying, bullying, bullying, school coexistence, cyberbullying

    Development of active and nanotechnology-based smart edible packaging systems: physical-chemical characterization

    Get PDF
    This work aims at characterising polysaccharide-based films without (GA) and with the incorporation of free natamycin (GA-NA) and natamycin-loaded in a smart delivery device consisting in poly(N-isopropylacrylamide) nanohydrogels (GA-PNIPA). Transport properties (water vapour, oxygen and carbon dioxide permeabilities), mechanical properties (tensile strength and elongation-at-break), opacity, water sensitivity (moisture content and contact angle) and thermal properties (differential scanning calorimetry and thermogravimetric analyses) were evaluated. Chemical interactions were studied by means of Fourier transform infrared spectroscopy and scanning electron microscopy was used to verify the presence of natamycin and nanohydrogel particles in the film matrix. The results show that natamycin and natamycin-loaded poly(N-isopropylacrylamide) (PNIPA) nanohydrogels can be successfully added to edible films without changing their main packaging properties. However, tensile strength decreased (p < 0.05) when both natamycin and natamycin-loaded PNIPA nanohydrogels were incorporated (from 24.44 to 17.02 and 16.63 MPa, for GA-NA and GA-PNIPA, respectively). GA-NA and GA-PNIPA films are more opaque and showed to be more sensitive to water (i.e. higher values of moisture content and decrease of contact angle) than GA films. Scanning electron microscopy images confirmed the presence of natamycin and poly(N-isopropylacrylamide) nanohydrogels in the films’ matrix. Since natamycin could be successfully released from polysaccharide-based films, the system could be used as active packaging ingredient when used free in the matrix or as smart packing when loaded with PNIPA nanohydrogels.Miguel A. Cerqueira (SFRH/BPD/72753/2010) is a recipient of a fellowship from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN and FSE Portugal). The support of EU Cost Actions FA0904 and FA1001 is gratefully acknowledged

    Creating functional nanostructures: Encapsulation of caffeine into α-lactalbumin nanotubes

    Get PDF
    This work evaluated the stability and functionality of nanotubes obtained from α-lactalbumin (α-LA). α-LA nanotubes' structure was highly stable during a freeze-drying process but not after grinding. The ability of α-LA nanotubes to encapsulate caffeine, used as a model molecule, was evaluated. α-La nanotubes were highly effective for this purpose as encapsulation efficiency (%EE) was near 100% and loading capacity (%LC) near 10% at 1.5/20 and 2/20 ratios (caffeine/α-LA, w/w). α-LA nanotubes' structure was not affected by the presence of caffeine. Also, in general, refrigeration temperatures and neutral or alkaline conditions, under which the adverse effect of chelating agents was prevented, helped to stabilise α-LA nanotubes' structure and maintain caffeine encapsulated. At 8 °C and pH 7.5, in the presence of 75 μg mL− 1 of EDTA, > 50% of the caffeine remained encapsulated into α-LA nanotubes.Clara Fuciños gratefully acknowledge her Post-Doctoral grant (I2C 2014) from Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia, Spain). Pablo Fuciños gratefully acknowledges his Marie Curie COFUND Postdoctoral Research Fellowship (Project No: 600375. NanoTRAINforGrowth - INL Fellowship programme in nanotechnologies for biomedical, environment and food applications). This study was supported by the Fundação para a Ciência e a Tecnologia (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), and the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462)

    Structural characterization and release profile of omega-3 fatty-acids encapsulated in nanoemulsions

    Get PDF
    Omega-3 (-3) fatty-acids are functional compounds with various benefits such as reduction of cardiovascular diseases. However, these fatty acids degrade quickly, present low water solubility and an unpleasant aroma, which make essential their encapsulation. The encapsulation (e.g. nanoemulsion production) process can change structural properties, which can affect the behavior of the system when applied to food matrices and within the gastrointestinal tract. The objective of this work was to characterize oil-in-water bio-based nanoemulsions with -3 using lactoferrin as a natural emulsifier, when submitted to different drying processes. Nanoemulsions were produced using high-pressure homogenization (5 cycles, 20,000 psi) using 2 % (w/w) lactoferrin and 5 % (w/w) -3. Nanoemulsions were dried by nanospray-drying (Nano Spray dryer B-90HP, Buchi) and freeze-drying methods. Physical and morphological properties were evaluated using dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. Circular dichroism (CD) and FTIR-ATR were used to assess possible structural and chemical changes after dry treatments. Moreover, -3 release profile was studied in ethanol (20 % and 50 % (v/v)) at 25 ºC (simulation of food matrices) and at pH 7.4 and pH 2 at 37 ºC (simulation of different gastrointestinal phases). DLS results showed that original size (170 nm) and zeta-potential (+30 mV) of nanoemulsions was not achieved after nanospray-drying process probably caused by protein agglomeration. CD and FTIR-ATR results revealed lactoferrin structural modifications after drying processes as well as a reduction of -helix and -sheet content, being this effect more evident on nanospray-drying samples. FTIR-ATR results showed shifts of the amide I and amide II bands in both drying processes samples. At 20 % ethanol, -3 began to release after 48h which could allow nanoemulsions incorporation in food products such as ice cream and mayonnaise. This work provides useful information to design nanoemulsions aiming lipophilic compound encapsulation for food applications.info:eu-repo/semantics/publishedVersio

    Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil

    Full text link
    [EN] This paper reports the development of biodegradable active packaging films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by the incorporation of alpha- and gamma-cyclodextrins (alpha-CD and gamma-CDs) containing oregano essential oil (OEO). Herein, both the kneading method (KM) and freeze-drying method (FDM) were first explored for the preparation of alpha-CD:OEO and gamma-CD:OEO inclusion complexes at host:guest ratios of 80:20 wt/wt and 85:15 wt/wt, respectively. The results showed that KM was the most efficient method for the encapsulation of OEO in the CDs cavity in terms of simplicity and rapidity, while it was also yielded the inclusion complexes with the highest antimicrobial and antioxidant performance. The alpha-CD:OEO and gamma-CD:OEO inclusion complexes obtained by KM were thereafter incorporated at 10, 15, 20, 25, and 30 wt% into PHBV fibres by electrospinning and annealed at 160 degrees C to produce contact transparent films. It was observed that the optimal concentration of alpha-CD:OEO and gamma-CD:OEO inclusion complexes for homogeneous and continuous film formation was attained at contents of 15 and 25 wt%, respectively. Higher antimicrobial and antioxidant activities were obtained for the gamma-CD:OEO inclusion complexes due to the greater encapsulation efficiency of OEO in gamma-CD, resulting in PHBV films with good performance for up to 15 days. This aspect, together with their improved thermal stability and mechanical strength, give interesting applications to these biopolymer films in the design of active-releasing packaging materials to maintain the physical, chemical, and microbiological characteristics of food products.The authors would like to thank the Unidad Asociada IATA-UJI "Plastics Technology" and the Spanish Ministry of Science and Innovation (MICI) project RTI 2018-097249-B-C21 and the H2020 EU project YPACK (reference number 773872) for funding. Kelly J. Figueroa-Lopez and S. Torres-Giner are recipients of a Grisolia scholarship (Ref. 0001426013N810001A201) of the Valencian Government (GVA) and a Juan de la Cierva-Incorporaci.on contract (IJCI-2016-29675) from MICI, respectively.Figueroa-Lopez, K.; Enescu, D.; Torres-Giner, S.; Cabedo, L.; Cerqueira, M.; Pastrana, L.; Fuciños, P.... (2020). Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil. Food Hydrocolloids. 108:1-18. https://doi.org/10.1016/j.foodhyd.2020.106013S118108Ashori, A., Jonoobi, M., Ayrilmis, N., Shahreki, A., & Fashapoyeh, M. A. (2019). Preparation and characterization of polyhydroxybutyrate-co-valerate (PHBV) as green composites using nano reinforcements. International Journal of Biological Macromolecules, 136, 1119-1124. doi:10.1016/j.ijbiomac.2019.06.181Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., & Uyar, T. (2017). Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chemistry, 233, 117-124. doi:10.1016/j.foodchem.2017.04.095Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106Beirão-da-Costa, S., Duarte, C., Bourbon, A. I., Pinheiro, A. C., Januário, M. I. N., Vicente, A. A., … Delgadillo, I. (2013). Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids, 33(2), 199-206. doi:10.1016/j.foodhyd.2013.03.009Bilia, A. R., Guccione, C., Isacchi, B., Righeschi, C., Firenzuoli, F., & Bergonzi, M. C. (2014). Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach. Evidence-Based Complementary and Alternative Medicine, 2014, 1-14. doi:10.1155/2014/651593Busolo, M. A., & Lagaron, J. M. (2015). Antioxidant polyethylene films based on a resveratrol containing Clay of Interest in Food Packaging Applications. Food Packaging and Shelf Life, 6, 30-41. doi:10.1016/j.fpsl.2015.08.004Campos, E. V. R., Proença, P. L. F., Oliveira, J. L., Melville, C. C., Della Vechia, J. F., de Andrade, D. J., & Fraceto, L. F. (2018). Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Scientific Reports, 8(1). doi:10.1038/s41598-018-20602-yCeccato, M., Lo Nostro, P., Rossi, C., Bonechi, C., Donati, A., & Baglioni, P. (1997). Molecular Dynamics of Novel α-Cyclodextrin Adducts Studied by 13C-NMR Relaxation. The Journal of Physical Chemistry B, 101(26), 5094-5099. doi:10.1021/jp9638447Celebioglu, A., Umu, O. C. O., Tekinay, T., & Uyar, T. (2014). Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids and Surfaces B: Biointerfaces, 116, 612-619. doi:10.1016/j.colsurfb.2013.10.029Crini, G. (2014). Review: A History of Cyclodextrins. Chemical Reviews, 114(21), 10940-10975. doi:10.1021/cr500081pDas, S., & Subuddhi, U. (2015). Studies on the complexation of diclofenac sodium with β–cyclodextrin: Influence of method of preparation. Journal of Molecular Structure, 1099, 482-489. doi:10.1016/j.molstruc.2015.07.001De Vincenzi, M., Stammati, A., De Vincenzi, A., & Silano, M. (2004). Constituents of aromatic plants: carvacrol. Fitoterapia, 75(7-8), 801-804. doi:10.1016/j.fitote.2004.05.002Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39(9), 1033-1046. doi:10.1016/s0032-9592(03)00258-9Dietrich, K., Dumont, M.-J., Del Rio, L. F., & Orsat, V. (2019). Sustainable PHA production in integrated lignocellulose biorefineries. New Biotechnology, 49, 161-168. doi:10.1016/j.nbt.2018.11.004Figueroa-Lopez, K., Andrade-Mahecha, M., & Torres-Vargas, O. (2018). Development of Antimicrobial Biocomposite Films to Preserve the Quality of Bread. Molecules, 23(1), 212. doi:10.3390/molecules23010212Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144Gao, N., Yang, J., Wu, Y., Yue, J., Cao, G., Zhang, A., … Feng, Z. (2019). β-Cyclodextrin functionalized coaxially electrospun poly(vinylidene fluoride) @ polystyrene membranes with higher mechanical performance for efficient removal of phenolphthalein. Reactive and Functional Polymers, 141, 100-111. doi:10.1016/j.reactfunctpolym.2019.05.001Gaur, S., Lopez, E. C., Ojha, A., & Andrade, J. E. (2018). Functionalization of Lipid‐Based Nutrient Supplement with β‐Cyclodextrin Inclusions of Oregano Essential Oil. Journal of Food Science, 83(6), 1748-1756. doi:10.1111/1750-3841.14178Giordano, F., Novak, C., & Moyano, J. R. (2001). Thermal analysis of cyclodextrins and their inclusion compounds. Thermochimica Acta, 380(2), 123-151. doi:10.1016/s0040-6031(01)00665-7Guimarães, A. G., Oliveira, M. A., Alves, R. dos S., Menezes, P. dos P., Serafini, M. R., de Souza Araújo, A. A., … Quintans Júnior, L. J. (2015). Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chemico-Biological Interactions, 227, 69-76. doi:10.1016/j.cbi.2014.12.020Haloci, E., Toska, V., Shkreli, R., Goci, E., Vertuani, S., & Manfredini, S. (2014). Encapsulation of Satureja montana essential oil in β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 80(1-2), 147-153. doi:10.1007/s10847-014-0437-zHarada, A., & Kamachi, M. (1990). Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules, 23(10), 2821-2823. doi:10.1021/ma00212a039Harada, A., Li, J., & Kamachi, M. (1992). The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature, 356(6367), 325-327. doi:10.1038/356325a0Harada, A., Li, J., & Kamachi, M. (1993). Synthesis of a tubular polymer from threaded cyclodextrins. Nature, 364(6437), 516-518. doi:10.1038/364516a0Harada, A., Suzuki, S., Okada, M., & Kamachi, M. (1996). Preparation and Characterization of Inclusion Complexes of Polyisobutylene with Cyclodextrins. Macromolecules, 29(17), 5611-5614. doi:10.1021/ma960428bHedges, A. R. (1998). Industrial Applications of Cyclodextrins. Chemical Reviews, 98(5), 2035-2044. doi:10.1021/cr970014wHill, L. E., Gomes, C., & Taylor, T. M. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT - Food Science and Technology, 51(1), 86-93. doi:10.1016/j.lwt.2012.11.011Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50-56. doi:10.1016/j.carbpol.2013.02.031Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19. doi:10.1016/j.foodhyd.2013.08.030Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., Cheng, Y., … Yao, W. (2019). Application of essential oil as a sustained release preparation in food packaging. Trends in Food Science & Technology, 92, 22-32. doi:10.1016/j.tifs.2019.08.005Kaolaor, A., Phunpee, S., Ruktanonchai, U. R., & Suwantong, O. (2019). Effects of β-cyclodextrin complexation of curcumin and quaternization of chitosan on the properties of the blend films for use as wound dressings. Journal of Polymer Research, 26(2). doi:10.1007/s10965-019-1703-yKayaci, F., & Uyar, T. (2012). Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin. Food Chemistry, 133(3), 641-649. doi:10.1016/j.foodchem.2012.01.040Liang, H., Yuan, Q., Vriesekoop, F., & Lv, F. (2012). Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds. Food Chemistry, 135(3), 1020-1027. doi:10.1016/j.foodchem.2012.05.054Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151-1170. doi:10.1002/adma.200400719Loftsson, T., & Brewster, M. E. (1996). Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. Journal of Pharmaceutical Sciences, 85(10), 1017-1025. doi:10.1021/js950534bLu, Z., Cheng, B., Hu, Y., Zhang, Y., & Zou, G. (2009). Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chemistry, 113(1), 17-20. doi:10.1016/j.foodchem.2008.04.042Marques, H. M. C. (2010). A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour and Fragrance Journal, 25(5), 313-326. doi:10.1002/ffj.2019Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227NAKANISHI, K., MASUKAWA, T., NADAI, T., YOSHII, K., OKADA, S., & MIYAJIMA, K. (1997). Sustained Release of Flufenamic Acid from a Drug-Triacetyl-.BETA.-Cyclodextrin Complex. Biological and Pharmaceutical Bulletin, 20(1), 66-70. doi:10.1248/bpb.20.66Owen, L., & Laird, K. (2018). Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance. Critical Reviews in Microbiology, 44(4), 414-435. doi:10.1080/1040841x.2018.1423616Ozdemir, N., Pola, C. C., Teixeira, B. N., Hill, L. E., Bayrak, A., & Gomes, C. L. (2018). Preparation of black pepper oleoresin inclusion complexes based on beta-cyclodextrin for antioxidant and antimicrobial delivery applications using kneading and freeze drying methods: A comparative study. LWT, 91, 439-445. doi:10.1016/j.lwt.2018.01.046Ponce Cevallos, P. A., Buera, M. P., & Elizalde, B. E. (2010). Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability. Journal of Food Engineering, 99(1), 70-75. doi:10.1016/j.jfoodeng.2010.01.039Prakash, B., Kedia, A., Mishra, P. K., & Dubey, N. K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities – Potentials and challenges. Food Control, 47, 381-391. doi:10.1016/j.foodcont.2014.07.023Prakash, B., Singh, P., Kedia, A., & Dubey, N. K. (2012). Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Research International, 49(1), 201-208. doi:10.1016/j.foodres.2012.08.020Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2Rakmai, J., Cheirsilp, B., Mejuto, J. C., Torrado-Agrasar, A., & Simal-Gándara, J. (2017). Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocolloids, 65, 157-164. doi:10.1016/j.foodhyd.2016.11.014Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250-264. doi:10.1016/j.indcrop.2014.05.055Ribeiro-Santos, R., Andrade, M., Melo, N. R. de, & Sanches-Silva, A. (2017). Use of essential oils in active food packaging: Recent advances and future trends. Trends in Food Science & Technology, 61, 132-140. doi:10.1016/j.tifs.2016.11.021Rusa, C. C., Bullions, T. A., Fox, J., Porbeni, F. E., Wang, X., & Tonelli, A. E. (2002). Inclusion Compound Formation with a New Columnar Cyclodextrin Host. Langmuir, 18(25), 10016-10023. doi:10.1021/la0262452Sagiri, S. S., Anis, A., & Pal, K. (2015). Review on Encapsulation of Vegetable Oils: Strategies, Preparation Methods, and Applications. Polymer-Plastics Technology and Engineering, 55(3), 291-311. doi:10.1080/03602559.2015.1050521Santos, E. H., Kamimura, J. A., Hill, L. E., & Gomes, C. L. (2015). Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT - Food Science and Technology, 60(1), 583-592. doi:10.1016/j.lwt.2014.08.046Saokham, P., Muankaew, C., Jansook, P., & Loftsson, T. (2018). Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules, 23(5), 1161. doi:10.3390/molecules23051161Seo, E.-J., Min, S.-G., & Choi, M.-J. (2010). Release characteristics of freeze-dried eugenol encapsulated withβ-cyclodextrin by molecular inclusion method. Journal of Microencapsulation, 27(6), 496-505. doi:10.3109/02652041003681398Shan, L., Tao, E., Meng, Q., Hou, W., Liu, K., Shang, H., … Zhang, W. (2016). Formulation, optimization, and pharmacodynamic evaluation of chitosan/phospholipid/&beta;-cyclodextrin microspheres. Drug Design, Development and Therapy, 417. doi:10.2147/dddt.s97982Sharifi-Rad, J., Sureda, A., Tenore, G., Daglia, M., Sharifi-Rad, M., Valussi, M., … Iriti, M. (2017). Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules, 22(1), 70. doi:10.3390/molecules22010070Sherry, M., Charcosset, C., Fessi, H., & Greige-Gerges, H. (2013). Essential oils encapsulated in liposomes: a review. Journal of Liposome Research, 23(4), 268-275. doi:10.3109/08982104.2013.819888Shin, J., Kathuria, A., & Lee, Y. S. (2019). Effect of hydrophilic and hydrophobic cyclodextrins on the release of encapsulated allyl isothiocyanate (AITC) and their potential application for plastic film extrusion. Journal of Applied Polymer Science, 136(42), 48137. doi:10.1002/app.48137Szejtli, J. (1998). Introduction and General Overview of Cyclodextrin Chemistry. Chemical Reviews, 98(5), 1743-1754. doi:10.1021/cr970022cTopuz, F., & Uyar, T. (2019). Electrospinning of nanocomposite nanofibers from cyclodextrin and laponite. Composites Communications, 12, 33-38. doi:10.1016/j.coco.2018.12.002Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393Wang, C. X., & Chen, S. L. (2005). Fragrance-release Property of β-Cyclodextrin Inclusion Compounds and their Application in Aromatherapy. Journal of Industrial Textiles, 34(3), 157-166. doi:10.1177/1528083705049050Yildiz, Z. I., Celebioglu, A., Kilic, M. E., Durgun, E., & Uyar, T. (2018). Menthol/cyclodextrin inclusion complex nanofibers: Enhanced water-solubility and high-temperature stability of menthol. Journal of Food Engineering, 224, 27-36. doi:10.1016/j.jfoodeng.2017.12.020Zainuddin, S., Kamrul Hasan, S. M., Loeven, D., & Hosur, M. (2019). Mechanical, Fire Retardant, Water Absorption and Soil Biodegradation Properties of Poly(3-hydroxy-butyrate-co-3-valerate) Nanofilms. Journal of Polymers and the Environment, 27(10), 2292-2304. doi:10.1007/s10924-019-01517-9Zhang, J., Shishatskaya, E. I., Volova, T. G., da Silva, L. F., & Chen, G.-Q. (2018). Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering: C, 86, 144-150. doi:10.1016/j.msec.2017.12.035Zhang, M., Wang, J., Lyu, Y., Fitriyanti, M., Hou, H., Jin, Z., … Narsimhan, G. (2018). Understanding the antimicrobial activity of water soluble γ-cyclodextrin/alamethicin complex. Colloids and Surfaces B: Biointerfaces, 172, 451-458. doi:10.1016/j.colsurfb.2018.08.06

    Beta-carotene loaded oleogels’ texture and disintegration behaviour during in-vitro digestion

    Get PDF
    Food products are digested in different ways ; rigidity and different textures are characteristics that will influence how digestion will occur. Absorption of lipids and lipid-soluble components from food is quite complex and factors like lipid composition, breakdown of food matrices, emulsion droplet size and lipid solubilization within mixed micelles of bile salts will influence the digestive process (Dickinson, 2014) . In this work, two types of edible oleogels loaded with beta-carotene (0.01 % w/w) have been developed. The oleogels were produced through the gelling process of long chain triglycerides (oil phase) with a sterol-mix (formed by gamma-oryzanol and beta-sitosterol) or beeswax as the two oil gelators. We report on the morphological and textural characteristics, as well as on the cytotoxicity and digestive behaviour of the oleogels during a digestion simulation (i.e. mouth, stomach and small intestine) using a static harmonized in-vitro digestion method (Minekus et al., 2014). Textural results showed that sterol-based oleogels have an average hardness of 0.6 N, which is approximately 4 times higher than the values recorded for beeswax oleogels. Both gels presented adhesiveness values without significative differences. In-vitro digestion allowed concluding that both types of oleogels showed structural disintegration, namely during the final two steps that correspond to gastric and intestinal phase (as evaluated by visual inspection and fluorescence microscopy analysis). In addition, beeswax oleogels’ structure was less resilient than oryzanol oleogels. Cytotoxicity tests, using a human epithelial cell line (Caco-2) with PrestoBlue assay, showed that both undigested sterol-and beeswax-based oleogels (without beta-carotene) were not cytotoxic, up to 48 hours of contact . Beeswax-based oleogels loaded with beta-carotene showed the same non-toxic behaviour under the same conditions. Future work will be performed aiming at establishing the rel ationship between gels’ disintegration and beta-carotene bioavailabilityinfo:eu-repo/semantics/publishedVersio

    Food Perceptions and Dietary Changes for Chronic Condition Management in Rural Peru: Insights for Health Promotion.

    Get PDF
    Peru is undergoing a nutrition transition and, at the country level, it faces a double burden of disease where several different conditions require dietary changes to maintain a healthy life and prevent complications. Through semistructured interviews in rural Peru with people affected by three infectious and noninfectious chronic conditions (type 2 diabetes, hypertension, and neurocysticercosis), their relatives, and focus group discussions with community members, we analyzed their perspectives on the value of food and the challenges of dietary changes due to medical diagnosis. The findings show the various ways in which people from rural northern Peru conceptualize good (buena alimentación) and bad (mala alimentación) food, and that food choices are based on life-long learning, experience, exposure, and availability. In the context of poverty, required changes are not only related to what people recognize as healthy food, such as fruits and vegetables, but also of work, family, trust, taste, as well as affordability and accessibility of foods. In this paper we discuss the complexity of introducing dietary changes in poor rural communities whose perspectives on food are poorly understood and rarely taken into consideration by health professionals when promoting behavior change

    Physicochemical properties of alginate-based films: effect of ionic crosslinking and mannuronic and guluronic acid ratio

    Get PDF
    Abstract The use of alginates as films in food applications has increased in the recent years due to their swelling capacity and overall functionality. This behaviour is a result of their capacity to crosslink with Ca2+ ion. Aiming to fully understand the effect of calcium chloride (CaCl2) crosslinking and the mannuronic (M) and guluronic (G) acid ratio (M/G) of alginate structure in the films properties, alginate-based films with different (M/G) ratios were crosslinked at increasing CaCl2 concentrations. Films were produced by casting, and characterized in terms of mechanical properties (tensile strength and elongation-at-break), opacity, water sensitivity (moisture content, solubility and water vapour permeability) and morphology, evaluated by scanning electronic microscopy (SEM). Chemical interactions were studied by Fourier Transform Infrared Spectroscopy (FTIR) to assess possible chemical modifications of alginate-based films after crosslinking. Crosslinking significantly affected the alginate structure and properties, decreasing film thickness, moisture content, solubility and water vapour permeability of the alginate-based films. The mechanical properties were also influenced by the crosslinking and high CaCl2 concentrations lead to an increase of tensile strength. Results showed a relation between M/G ratios and CaCl2 concentrations and the resulting films properties. Alginate and the respective crosslinker should be chosen taking into account M/G ratio, since high contents of M residues lead to fragile and flexible films and high content of G residues to stronger films, and these properties are highly dependent on the concentration of CaCl2. Overall, alginate-based films are a good candidate to obtain tailored made edible films for food applications. Further investigation should be done to fully understand the effect of the alginate chain composition and order (e.g. MM, GG, GM, MG) in alginate-based films properties.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Maria José Costa is recipient of a fellowship supported by a doctoral program (SFRH/BD/122897/2016) funded by the Portuguese Foundation for Science and Technology (FCT, POPH-QREN and FSE Portugal). Sanna Sillankorva is Investigador FCT (IF/01413/2013). This research was supported by Norte Regional Operational Program 2014–2020 (Norte2020) through the European Regional Development Fund (ERDF) Nanotechnology based functional solutions (NORTE-01-0145-FEDER-000019).info:eu-repo/semantics/publishedVersio
    corecore