7,494 research outputs found

    Forecasting Issues in NCAA Division I FBS Athletics

    Get PDF
    The National Collegiate Athletic Association (NCAA) and its member institutions have been faced with significant changes in the recent past. This study was used to predict issues, caused by some of these changes, which will impact leaders of NCAA Division I Football Bowl Subdivision (FBS) athletic departments over the next five to seven years. The Delphi technique was employed to obtain expert opinions for the forecast. The expert panel consisted of sport management faculty who were surveyed over three rounds to determine what issues were likely to occur and whether or not those issues would have a significant impact. The purpose of the study was to anticipate the issues stemming from the granting of autonomy to the Power 5 conferences and the recent litigation facing the NCAA and its member institutions. Further, the forecast is meant to aid in stakeholder management and strategic planning for athletic administrators at FBS institutions. The expert panel identified nine possible issues, deeming three of the issues likely to occur and four of the issues as having a significant impact. Based on these results, recommendations and suggestions for future research are discussed

    An Examination of the Present and Predictions for the Future of Intercollegiate Athletics

    Get PDF
    This study forecasts future issues in NCAA Division I FBS intercollegiate athletics. The research design employed the Delphi technique to survey an expert panel, consisting of 12 athletic directors and associate athletic directors from FBS institutions, over three rounds to ascertain what issues are likely to occur over the next five to seven years and whether or not these issues will have a significant impact on the way intercollegiate athletics operates. Results of the study revealed eight issues that were likely to occur over the next five to seven years. Four of these issues related to the economic sector of the environment, one related to the legal sector, and three related to the sociocultural. Further, 14 of the issues were rated by the expert panel as having a significant level of impact if they were to occur. Recommendations are made based on the forecasts by the expert panel

    Collective vibrational states with fast iterative QRPA method

    Full text link
    An iterative method we previously proposed to compute nuclear strength functions is developed to allow it to accurately calculate properties of individual nuclear states. The approach is based on the quasi-particle-random-phase approximation (QRPA) and uses an iterative non-hermitian Arnoldi diagonalization method where the QRPA matrix does not have to be explicitly calculated and stored. The method gives substantial advantages over conventional QRPA calculations with regards to the computational cost. The method is used to calculate excitation energies and decay rates of the lowest lying 2+ and 3- states in Pb, Sn, Ni and Ca isotopes using three different Skyrme interactions and a separable gaussian pairing force.Comment: 10 pages, 11 figure

    Optimized random phase approximations for arbitrary reference systems: extremum conditions and thermodynamic consistence

    Full text link
    The optimized random phase approximation (ORPA) for classical liquids is re-examined in the framework of the generating functional approach to the integral equations. We show that the two main variants of the approximation correspond to the addition of the same correction to two different first order approximations of the homogeneous liquid free energy. Furthermore, we show that it is possible to consistently use the ORPA with arbitrary reference systems described by continuous potentials and that the same approximation is equivalent to a particular extremum condition for the corresponding generating functional. Finally, it is possible to enforce the thermodynamic consistence between the thermal and the virial route to the equation of state by requiring the global extremum condition on the generating functional.Comment: 8 pages, RevTe

    Effect of cyclic loading on hydrogen diffusion in low carbon steels

    Get PDF
    Carbon steels or low-alloyed steels may be affected by damaging phenomena due to Hydrogen Embrittlement (HE), which is a particular form of Environmental Assisted Cracking (EAC). The insurgence of HE depends on the intrinsic susceptibility of the steel, the applied stress, and the concentration of hydrogen inside the metal. It occurs by a mechanism of absorption and subsequent diffusion of atomic hydrogen through the metal lattice. On steels with a yield strength lower than 700 MPa, HE occurs in the plastic deformation field, in the presence of dynamic loading at slow strain rates or cyclic fatigue loading at very low frequencies. Although several important studies were carried out on the effect of loading conditions on hydrogen diffusion into the metal and HE mechanism, HE phenomena are not fully understood. In this work, the effect of the application of cyclic loads on hydrogen diffusion parameters was studied both in the elastic and in the plastic deformation field. The influence of mean load and amplitude was analyzed. Hydrogen permeation tests were performed on API 5L X65 steel, in accordance with ISO 17081:2014. The specimen behaved as bi-electrode between the two compartments of a Devanathan-Stachurski cell. The anodic side of the specimen was polarized at +340 mV vs Ag/AgCl in a 0.1 M NaOH aerated solution, while the cathodic compartment was filled with an aerated borate solution. A controller enabled temperature adjustment at 20±0.5°C. Once the passivity current registered in the anodic side reached values of 0.05 µA/cm2, a cathodic current density of 0.50 mA/cm2 was applied to charging cathodic side. The study included tests with sine waveform cycling loading, with a maximum level equal to 110% TYS, at a frequency of 10-2 Hz. The results confirmed the values of hydrogen diffusion coefficient usually indicated for low-alloyed steels with a sorbitic microstructure. Strain hardened specimens - stretched above yield strength - showed an increase of steady state current and an extension of the time lag, denoting a slight decrease in the apparent hydrogen diffusion coefficient due to traps effect in the cold deformed steel matrix. Under cyclic loading, an instantaneous peak of current with a subsequent significant transient decrease occurred after cyclic load application, whereas no relevant variation of permeation curve compared to unloaded specimens was observed if specimens were already loaded before hydrogen charging. The instantaneous current peak reached values much higher than the steady state current. This is ascribed to the rupture of the passive film – caused by loading – and its subsequent reformation; in fact, this can also be noted during tests performed on specimens without hydrogen permeation. The following transient, in which the permeation current decreases below the steady state and then returns to it, denotes a relevant trapping effect that causes the instantaneous reduction of mobile hydrogen concentration in the lattice. This becomes more significant for loads closer and closer to the yield strength, mainly beyond this, and can only be noted at the first loading step. Subsequent unloading and loading step at the same mean value showed no transient in the permeation curren

    Linear response of light deformed nuclei investigated by self-consistent quasiparticle random-phase-approximation

    Full text link
    We present a calculation of the properties of vibrational states in deformed, axially--symmetric even--even nuclei, within the framework of a fully self--consistent Quasparticle Random Phase Approximation (QRPA). The same Skyrme energy density and density-dependent pairing functionals are used to calculate the mean field and the residual interaction in the particle-hole and particle-particle channels. We have tested our software in the case of spherical nuclei against fully self consistent calculations published in the literature, finding excellent agreement. We investigate the consequences of neglecting the spin-orbit and Coulomb residual interactions in QRPA. Furthermore we discuss the improvement obtained in the QRPA result associated with the removal of spurious modes. Isoscalar and isovector responses in the deformed 2426{}^{24-26}Mg, 34^{34}Mg isotopes are presented and compared to experimental findings

    Provenance and recycling of Sahara Desert sand

    Get PDF
    We here present the first comprehensive provenance study of the Sahara Desert using a combination of multiple provenance proxies and state-of-the-art statistical analysis. Our dataset comprises 44 aeolian-dune samples, collected across the region from 12°N (Nigeria) to 34°N (Tunisia) and from 33°E (Egypt) to 16°W (Mauritania) and characterized by bulk-petrography, heavy-mineral, and detrital-zircon Usingle bondPb geochronology analyses. A set of statistical tools including Multidimensional Scaling, Correspondence Analysis, Individual Difference Scaling, and General Procrustes Analysis was applied to discriminate among sample groups with the purpose to reveal meaningful compositional patterns and infer sediment transport pathways on a geological scale. The overall homogenity across sand samples, however, precluded a detailed narrative. Saharan dune fields are, with a few local exceptions, composed of pure quartzose sand with very poor heavy-mineral suites dominated by durable zircon, tourmaline, and rutile. Some feldspars, amphibole, epidote, garnet, or staurolite occur closer to basement exposures, and carbonate grains, clinopyroxene and olivine near a basaltic field in Libya. Relatively varied compositions also characterize sand along the Nile Valley and the southern front of the Anti-Atlas fold belt in Morocco. Otherwise, from the Sahel to the Mediterranean Sea and from the Nile River to the Atlantic Ocean, sand consists nearly exclusively of quartz and durable minerals. These have been concentrated through multiple cycles of erosion, deposition, and diagenesis of Phanerozoic siliciclastic rocks during the long period of relative tectonic quiescence that followed the Neoproterozoic Pan-African orogeny, the last episode of major crustal growth in the region. The principal ultimate source of recycled sand is held to be represented by the thick blanket of quartz-rich sandstones that were deposited in the Cambro-Ordovician from the newly formed Arabian-Nubian Shield in the east to Mauritania in the west. Durability of zircon grains and their likelihood to be recycled from older sedimentary rocks argues against the assumption, too often implicitly taken for granted in provenance studies based on detrital-zircon ages, that their age distribution reflects transport pathways existing at the time of deposition rather than inheritance from multiple and remote landscapes of the past

    Symbol-asynchronous transmission in multibeam satellite user down-link : rate regions for novel superposition coding schemes

    Get PDF
    We consider the forward link of a multibeam satellite system with high spectral reuse and the novel low-complexity transmission and detection strategies from [1]. More specifically, we study the impact of a time offset between the antenna beams that cooperate to simultaneously serve a given user. Assuming Gaussian signaling, we provide closed-form expressions for the achievable rate region. It is demonstrated that, in the absence of timing information at the gateway, this region is not affected by a time offset. Our numerical results further show that, in case timing is known at the gateway, an offset of half a symbol period at both user terminals is optimal in terms of spectral efficiency.Grant numbers : Satellite Network of Experts IV. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Non-coherent rate-splitting for multibeam satellite forward link : practical coding and decoding algorithms

    Get PDF
    Non-Coherent Rate-Splitting (NCRS) was recently proposed as a practical multiuser coding and decoding scheme to increase the spectral efficiency of multibeam satellite communication systems. In this paper, we further study the practical realization of NCRS. We propose a modified coding scheme (NCRS*) that is robust to a nonzero time offset among beams. In NCRS*, as opposed to NCRS, the beams send independently channel encoded and modulated waveforms. We assess the performance of NCRS* in terms of the achievable rate region. It is shown that NCRS* performs worse than NCRS, but better than or comparable to other competing schemes, which, as opposed to NCRS*, require flexible bandwidth allocation or perfect synchronization at the transmitter. We also propose a new N-MAP algorithm for the practical implementation of NCRS* receivers. Similar to the existing UMAP algorithm, N-MAP takes into account the modulation used by, and the time offset between, the signals received from the different beams. In most cases, however, N-MAP has a significantly lower complexity than U-MAP
    corecore