9,708 research outputs found

    Quasi-chemical approximation for polyatomic mixtures

    Full text link
    The statistical thermodynamics of binary mixtures of polyatomic species was developed on a generalization in the spirit of the lattice-gas model and the quasi-chemical approximation (QCA). The new theoretical framework is obtained by combining: (i) the exact analytical expression for the partition function of non-interacting mixtures of linear kk-mers and ll-mers (species occupying kk sites and ll sites, respectively) adsorbed in one dimension, and its extension to higher dimensions; and (ii) a generalization of the classical QCA for multicomponent adsorbates and multisite-occupancy adsorption. The process is analyzed through the partial adsorption isotherms corresponding to both species of the mixture. Comparisons with analytical data from Bragg-Williams approximation (BWA) and Monte Carlo simulations are performed in order to test the validity of the theoretical model. Even though a good fitting is obtained from BWA, it is found that QCA provides a more accurate description of the phenomenon of adsorption of interacting polyatomic mixtures.Comment: 27 pages, 8 figure

    Percolation in Hierarchical Scale-Free Nets

    Full text link
    We study the percolation phase transition in hierarchical scale-free nets. Depending on the method of construction, the nets can be fractal or small-world (the diameter grows either algebraically or logarithmically with the net size), assortative or disassortative (a measure of the tendency of like-degree nodes to be connected to one another), or possess various degrees of clustering. The percolation phase transition can be analyzed exactly in all these cases, due to the self-similar structure of the hierarchical nets. We find different types of criticality, illustrating the crucial effect of other structural properties besides the scale-free degree distribution of the nets.Comment: 9 Pages, 11 figures. References added and minor corrections to manuscript. In pres

    Epidemic dynamics in finite size scale-free networks

    Get PDF
    Many real networks present a bounded scale-free behavior with a connectivity cut-off due to physical constraints or a finite network size. We study epidemic dynamics in bounded scale-free networks with soft and hard connectivity cut-offs. The finite size effects introduced by the cut-off induce an epidemic threshold that approaches zero at increasing sizes. The induced epidemic threshold is very small even at a relatively small cut-off, showing that the neglection of connectivity fluctuations in bounded scale-free networks leads to a strong over-estimation of the epidemic threshold. We provide the expression for the infection prevalence and discuss its finite size corrections. The present work shows that the highly heterogeneous nature of scale-free networks does not allow the use of homogeneous approximations even for systems of a relatively small number of nodes.Comment: 4 pages, 2 eps figure

    Velocity and hierarchical spread of epidemic outbreaks in scale-free networks

    Get PDF
    We study the effect of the connectivity pattern of complex networks on the propagation dynamics of epidemics. The growth time scale of outbreaks is inversely proportional to the network degree fluctuations, signaling that epidemics spread almost instantaneously in networks with scale-free degree distributions. This feature is associated with an epidemic propagation that follows a precise hierarchical dynamics. Once the highly connected hubs are reached, the infection pervades the network in a progressive cascade across smaller degree classes. The present results are relevant for the development of adaptive containment strategies.Comment: 4 pages, 4 figures, final versio

    InAs/InP single quantum wire formation and emission at 1.5 microns

    Get PDF
    Isolated InAs/InP self-assembled quantum wires have been grown using in situ accumulated stress measurements to adjust the optimal InAs thickness. Atomic force microscopy imaging shows highly asymmetric nanostructures with average length exceeding more than ten times their width. High resolution optical investigation of as-grown samples reveals strong photoluminescence from individual quantum wires at 1.5 microns. Additional sharp features are related to monolayer fluctuations of the two dimensional InAs layer present during the early stages of the quantum wire self-assembling process.Comment: 4 pages and 3 figures submitted to Applied Physics Letter

    Computational complexity arising from degree correlations in networks

    Full text link
    We apply a Bethe-Peierls approach to statistical-mechanics models defined on random networks of arbitrary degree distribution and arbitrary correlations between the degrees of neighboring vertices. Using the NP-hard optimization problem of finding minimal vertex covers on these graphs, we show that such correlations may lead to a qualitatively different solution structure as compared to uncorrelated networks. This results in a higher complexity of the network in a computational sense: Simple heuristic algorithms fail to find a minimal vertex cover in the highly correlated case, whereas uncorrelated networks seem to be simple from the point of view of combinatorial optimization.Comment: 4 pages, 1 figure, accepted in Phys. Rev.

    Redefining the role of obstacles in pedestrian evacuation

    Get PDF
    The placement of obstacles in front of doors is believed to be an effective strategy to increase the flow of pedestrians, hence improving the evacuation process. Since it was first suggested, this counterintuitive feature is considered a hallmark of pedestrian flows through bottlenecks. Indeed, despite the little experimental evidence, the placement of an obstacle has been hailed as the panacea for solving evacuation problems. In this work, we challenge this idea and experimentally demonstrate that the pedestrians flow rate is not necessarily altered by the presence of an obstacle. This result - which is at odds with recent demonstrations on its suitability for the cases of granular media, sheep and mice - differs from the outcomes of most of existing numerical models, and warns about the risks of carelessly extrapolating animal behaviour to humans. Our experimental findings also reveal an unnoticed phenomenon in relation with the crowd movement in front of the exit: in competitive evacuations, an obstacle attenuates the development of collective transversal rushes, which are hazardous as they might cause falls.Fil: Garcimartín, A.. Universidad de Navarra; EspañaFil: Maza, D.. Universidad de Navarra; EspañaFil: Pastor, J. M.. Focke Meler Gluing Solutions S.A.; EspañaFil: Parisi, Daniel Ricardo. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martín Gómez, C.. Universidad de Navarra; EspañaFil: Zuriguel, I.. Universidad de Navarra; Españ

    Velocity fluctuations and hydrodynamic diffusion in sedimentation

    Get PDF
    We study non-equilibrium velocity fluctuations in a model for the sedimentation of non-Brownian particles experiencing long-range hydrodynamic interactions. The complex behavior of these fluctuations, the outcome of the collective dynamics of the particles, exhibits many of the features observed in sedimentation experiments. In addition, our model predicts a final relaxation to an anisotropic (hydrodynamic) diffusive state that could be observed in experiments performed over longer time ranges.Comment: 7 pages, 5 EPS figures, EPL styl

    Entropy-driven phase transition in a system of long rods on a square lattice

    Full text link
    The isotropic-nematic (I-N) phase transition in a system of long straight rigid rods of length k on square lattices is studied by combining Monte Carlo simulations and theoretical analysis. The process is analyzed by comparing the configurational entropy of the system with the corresponding to a fully aligned system, whose calculation reduces to the 1D case. The results obtained (1) allow to estimate the minimum value of k which leads to the formation of a nematic phase and provide an interesting interpretation of this critical value; (2) provide numerical evidence on the existence of a second phase transition (from a nematic to a non-nematic state) occurring at density close to 1 and (3) allow to test the predictions of the main theoretical models developed to treat the polymers adsorption problem.Comment: 14 pages, 6 figures. Accepted for publication in JSTA

    Multicomponent reaction-diffusion processes on complex networks

    Full text link
    We study the reaction-diffusion process A+BA + B \to \emptyset on uncorrelated scale-free networks analytically. By a mean-field ansatz we derive analytical expressions for the particle pair-correlations and the particle density. Expressing the time evolution of the particle density in terms of the instantaneous particle pair-correlations, we determine analytically the `jamming' effect which arises in the case of multicomponent, pair-wise reactions. Comparing the relevant terms within the differential equation for the particle density, we find that the `jamming' effect diminishes in the long-time, low-density limit. This even holds true for the hubs of the network, despite that the hubs dynamically attract the particles.Comment: 8 pages, 6 figure
    corecore