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Abstract. – We study non-equilibrium velocity fluctuations in a model for the sedimentation
of non-Brownian particles experiencing long-range hydrodynamic interactions. The complex
behavior of these fluctuations, the outcome of the collective dynamics of the particles, exhibits
many of the features observed in sedimentation experiments. In addition, our model predicts
a final relaxation to an anisotropic (hydrodynamic) diffusive state that could be observed in
experiments performed over longer time ranges.

Despite the fact that the study of sedimenting suspensions has a long and well-deserved
history for their ubiquitous nature and applications [1], attention to the non-equilibrium
density and velocity fluctuations in these systems has only been paid lately. In particular, the
nature of non-equilibrium fluctuations in the sedimentation process has been a subject of a long
controversy. While theoretical arguments [2] and extensive computer simulations [3] suggested
that velocity fluctuations should diverge with the system size, the available experimental
results [4, 5], and the theoretical analysis in ref. [6], found no evidence for such divergences.
These apparently contradictory observations may have found a reasonable interpretation after
the experimental evidence in ref. [7], and the theoretical study by Levine et al. [8].
Another striking piece in the puzzle of sedimentation was recently added by the experimen-

tal work of Rouyer et al. [9]. In their experiment, the authors analyzed the trajectories and
velocities of non-Brownian [10] particles sedimenting in a quasi–two-dimensional (2d) fluidized
bed, and showed the intrinsic non-Gaussian nature of velocity fluctuations. The main conclu-
sions of this work are the non-Gaussian form of the probability density functions (PDFs) of
the velocity fluctuations; the anisotropic character of the particle trajectories (diffusive along
the horizontal direction and superdiffusive along the vertical one); and the presence of very
long-range correlations in the velocity fluctuations along the gravity direction. New evidence
along some of these lines is also provided in a recent paper by Cowan et al. [11].
The results of refs. [7, 9, 11] pose new questions regarding the process of sedimentation,

which have not been addressed by previous theoretical approaches. Our purpose in this letter
is to tackle these questions from the point of view of the particle’s dynamics to ascertain
the chief physical mechanisms underlying such fluctuation phenomena. In order to do so,
we propose a model of sedimentation in which particles experience long-range hydrodynamic
interactions. We start from the solution of the linear Navier-Stokes equation for the suspension
in an unbounded incompressible fluid [1]. We consider a system ofN particles obeying a system
c© EDP Sciences
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of coupled differential equations which we solve numerically. In the solution of the equations,
we keep track of both positions and velocities of the particles, and compute several relevant
statistical properties. In our model, we observe most of the experimental features reported
in refs. [7,9,11], namely, slow and fast particles, and swirls and channels in the velocity field,
which, overall, yield non-Gaussian velocity distributions and a slow time relaxation of the
velocity autocorrelations. In addition, our model predicts a final relaxation to an anisotropic
(hydrodynamic) diffusive state, not observed in ref. [9].
The velocity of a particle n in a dilute suspension is given by the expression Un =∑

m Hnm ·Fm, where the sum is carried out over all the particles m in the suspension, Hnm is
the mobility tensor, and Fm, the external force acting on each particle, is gravity g, oriented
along the positive z-axis [1]. The simplest form of the tensor H corresponds to dilute suspen-
sions of point-like particles. In this case, the solution of the stationary Navier-Stokes equation
in an unbounded medium yields the so-called Oseen tensor H0(r) = (I+r⊗r/r2)/8πηr [12],
where I is the identity matrix, the operator ⊗ stands for the tensorial product, and η is the
fluid viscosity.
We study a suspension of monodisperse non-Brownian particles (for which inertial ef-

fects are irrelevant in a viscous fluid) at very low concentrations, where the point-particle
assumption is indeed a good approximation. Initially, particles are placed on the same ver-
tical xz plane. The form of the mobility matrix in the Oseen approximation ensures that
particles in such a configuration will never leave that plane. Simulations are performed
on a system of N particles in a square cell of size L (corresponding to a concentration
c = N/L2). Periodic boundary conditions (PBCs) are imposed in all directions (including
the y-direction perpendicular to the initial plane) in order to guarantee the uniformity of the
suspension [13]. To avoid the discontinuities arising from truncating long-range hydrodynamic
interactions, imposing PBCs amounts to considering Oseen interactions with an infinite set
of images of the original system [14]. In this way, the velocity of each particle is written as
Un =

∑
m

∑
d H0(rnm + d) · g, where the index m runs through all the particles inside a cell

of volume V , rnm indicates the relative position of a pair of particles within that cell, and d
runs through the positions of the images of m in an infinite number of cell replicas along the
x, y, and z axes.
Imposing PBCs along the y-axis is mathematically equivalent to imposing slip boundary

conditions to the fluid velocity field on effective walls parallel to the sedimentation plane,
and located at distances ±Ly/2, where Ly < L. Sedimentation experiments are usually car-
ried out within a thin fluid slab confined by parallel glass plates. A realistic modelization
of this process should thus include wall effects by imposing no-slip boundary conditions on
the walls. By doing so, hydrodynamic interactions become exponentially screened for length
scales larger than the slab thickness Ly. One then expects that exponentially damped inter-
actions introduce an external characteristic length into the problem, Ly, which will govern
the dynamics of the system, a fact that has not been pointed out in the experiments. On the
other hand, short-range interactions severely restrict the extent of the correlations, and render
the dynamics essentially diffusive on all length scales, preventing the system from showing the
collective behavior reported in the experiments. We have checked this last point by performing
simulations of a system with real walls at distances comparable to the average interparticle
separation. In particular, with our initial conditions one obtains a sum of modified Bessel
functions which decay exponentially fast for length scales greater than Ly. As expected, after
a short ballistic transient, we observe an essentially diffusive behavior, quite different indeed
from the data reported in refs. [7, 9, 11]. We thus conclude that long range interactions must
be preserved in order to account for the scale competition observed in the system. Our model
is based on this simple consideration.
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To compute Un, we resort to the Ewald summation method [14], which yields the following
expression:
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Here the function erfc(x) is the complementary error function, and β is a parameter which
controls the convergence of both the d and G sums. The reciprocal space vectors G are such
that G · d = 2πk, where k is an integer. The terms proportional to I are the same as for the
Coulomb potential [14]; the other terms are intrinsic to the Oseen tensor. As in the Coulomb
case, the term G = 0 in eq. (1) yields a divergent contribution. In the electrostatic case, this
infinite contribution cancels out after imposing an overall charge neutrality condition. In the
sedimentation problem, the G = 0 term cancels out after subtracting the mean sedimentation
velocity UM = (N/V )

∫
d3rH0(r) · g, and thus working with velocity fluctuations un =

Un − UM . By doing so, the particle positions are on average fixed, as in the sedimentation
experiments in a fluidized bed.
To follow the evolution of the trajectories and velocities of N particles, we integrate nu-

merically the 2N coupled equations drn/dt =
∑

m M(rn−rm) ·g−UM , whereM is given by
eq. (1), using an adaptive step-size fifth-order Runge-Kutta algorithm [15]. We have chosen
a convergence parameter β = L/12; other values of β were also tested, yielding equivalent
results. Simulations start from a configuration of N particles randomly placed on a square cell
of size L. Since the Oseen approximation is not valid at short distances, to avoid singularities
in the velocity field we have introduced an ad hoc very short-range repulsive hard-core term
of the form exp[−(r− 2a)/ρ], where a is the radius of the particles and ρ is a small parameter
that we select equal to 0.1.
The concentrations described by our model are severely limited by both the range of

validity of the Oseen approximation and the available CPU time. In our simulations, therefore,
we have considered concentrations c ≤ 1%, and cell sizes ranging from L = 100a to L = 200a.
We shall see, however, that our results for dilute concentrations already exhibit most of the
salient features reported in the literature. Averages were made over at least 100 realizations
starting with different random initial conditions.
In the evolution of our model, particles build up a complex and highly fluctuating pattern

of velocity swirls and channels, very similar to those experimentally observed [7,9]. In fig. 1a),
we show a snapshot of a system with concentration c = 1% and cell size L = 200a. The
number of swirls and their sense of flow (clock- or anticlock-wise) result from the collective
interactions, and have the constraint of zero global vorticity

∑
n ∇× un = 0, as follows from

the symmetries of the Oseen tensor.
At large times, the average root-mean-square velocity fluctuations (RMSVF) along the

horizontal, ūx, and vertical, ūz, directions grow with the concentration c. As naively expected
from the symmetry breaking induced by gravity, fluctuations are anisotropic. We measure
a ratio ūz/ūx � 2.5, which seems independent of c or L. This observation agrees with the
results reported in ref. [7].
Next, we have measured the probability density function (PDF) of the velocity fluctuations,

p(uz) and p(ux), normalized so as to have zero mean and unity standard deviation. In fig. 2 we
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Fig. 1 – a) Snapshot of the velocity fluctuations, showing both swirls and channels. b) Trajectories
of a fast (left) and a slow (right) particles (see text). Units given in particle radii.

plot the integrated distribution functions P+(u) =
∫ ∞

u
p(u′)du′ for the downward (rightward),

u > 0, velocity, and P−(−u) =
∫ u

−∞ p(u
′)du′ for the upward (leftward), u < 0, velocity, for

both vertical and horizontal fluctuations. In particular, the plots correspond to values of
c = 1% and L = 200a. We observe that the horizontal fluctuations are left-right symmetric
and very well approximated by a Gaussian distribution (solid line in fig. 2a)). On the other
hand, vertical fluctuations are fairly asymmetric and apparently non-Gaussian.
We now turn our attention to the two-time statistical properties of the velocity fluctuations.

First, we consider the velocity autocorrelation function gα(t) = 〈uα(0)uα(t)〉 /
〈
uα(0)2

〉
, for

α = x, z, where the brackets denote an average over particles and realizations, at a fixed time t.
In fig. 3 we depict gα(t) for two different concentrations, c = 1% (system I), represented with
(◦), and c = 0.25% (system II), represented with (×), in a box of size L = 200, as well as c = 1%
in a smaller box of size L = 100 (system III) which we plot with (�). The main plot represents
our data as a function of the rescaled time ct; raw data are shown in the inset. For both gx
and gz, we observe an initial exponential decay of the correlations with a characteristic time
proportional to c−1. This scaling of gα at short times can be understood by means of a simple
mean-field–like argument: Given the expression of the Oseen tensor, the velocity correlations
can be written as 〈u(t)u(0)〉 ∼ 〈u(0)/r(t)〉, where r is the separation between any pair of
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Fig. 2 – Integrated distributions P+ and P− for the (a) ux and (b) uz velocity fluctuations in linear-log
scale. The solid line corresponds to an integrated Gaussian distribution.
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Fig. 3 – Velocity autocorrelations as a function of time. The curves shown in the inset correspond to
the raw data, whereas in the main plot time has been rescaled by the characteristic time τ ∼ c−1.
◦ System I, × system II, � system III (see text).

Fig. 4 – Time derivative of the mean-square displacement in a double logarithmic scale. The solid
line with slope 1 represents the ballistic regime.

particles. Taking a time derivative, ∂t 〈u(t)u(0)〉 ∼ ∂t 〈u(0)/r(t)〉 ∼ − 〈
u(t)u(0)/r2

〉
, where in

the second step we have commuted derivative and average. A further simplification considers
r ∼ c−1/2, i.e., the average separation between particles. Then, we have ∂t 〈u(t)u(0)〉 ∼
− 〈u(t)u(0)〉 /c−1, yielding an exponential relaxation with characteristic time τ ∼ c−1.
After this initial decay, the x correlations of the more concentrated system I show a

clear negative region. Curiously, this behavior resembles that of a dense liquid. Negative
autocorrelations in a dense liquid are due to backscattering effects after collisions among
molecules. In our system, however, negative correlations are due to the permanence of the
particles in a velocity swirl. As argued in [9], during the course of a simulation some of the
particles become part of velocity swirls and spend in them a considerable amount of time.
They can be called slow particles and describe coil-like trajectories. Others (fast particles)
spend more time inside the channels separating swirls, and their trajectories are much more
elongated. Both channels and swirls can be observed in fig. 1a). In fig. 1b), we plot typical
trajectories of a fast and a slow particle.
At later times the correlations of the x components oscillate around zero, whereas the z

autocorrelations go through a second regime of much slower relaxation, and eventually become
zero towards the end of the simulation time. This enhancement of the z autocorrelations is
due to the very existence of channels between swirls, inside of which particles follow ballistic
trajectories with small fluctuations. Channels are interrupted by swirls, but since these must
be created in pairs of opposite vorticity (due to vorticity conservation), their creation is costly
and only a few are present in a box of small size. A long time is thus required for the particles
initially in a channel to become part of a few velocity swirls and uncorrelate from their initial
conditions.
To further explore the behavior of the system at long times, we have also studied the

mean-square displacement of the particles, Rα(t) =
〈
[rα(t)− rα(0)]2

〉
, which is an efficient

indicator of a possible effective diffusive behavior of the system (hydrodynamic diffusion) [3].
For the latter, we expect Rα(t) = 2Dαt, i.e., dRα(t)/dt = 2Dα ≡ const, where Dα is an
effective diffusion coefficient. In fig. 4 we represent the time derivative of Rα(t) for the
displacements along the x and z directions. The plateau at long times clearly indicates that
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the displacement along the x-direction becomes purely diffusive right after an initial ballistic
regime (Rx(t) ∼ t2). The z displacement also becomes eventually diffusive, but at longer times
scales. This final diffusive behavior is compatible with the fast decay of the tails of the PDFs
shown in fig. 2. We observe that Dz � Dx, hence the diffusive regime is highly anisotropic.
At intermediate times, we observe that Rz(t) can be fitted to a power law Rz(t) ∼ tα with an
exponent within the range 1-2. Such behavior was reported in [9], where experiments could
not be run for long enough times as in our simulations. We expect that experiments carried
out over longer time scales would also show the eventual diffusive behavior along the vertical
direction.
To sum up, we present a model for the sedimentation of non-Brownian particles in an

unbounded fluid that incorporates long-range hydrodynamic interactions and PBCs in the
simplest Oseen approximation. This model exhibits most of the salient features of the ex-
periments reported in refs. [7, 9, 11]. Our findings can be understood within the picture of
slow and fast particles: Slow particles spend most of the time within velocity swirls and con-
tribute to the fast relaxation of the velocity correlations. Fast particles moving along velocity
channels have strongly correlated (quasi-ballistic) trajectories and are responsible for the slow
relaxation component. For sufficiently long times, all particles become part of enough velocity
swirls, and our model predicts that the system eventually relaxes to a hydrodynamic diffusive
regime, that could be confirmed by experiments performed over longer time spans.
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