186 research outputs found

    Assembly, trafficking and function of gamma-secretase

    Get PDF
    gamma-Secretase catalyzes the final cleavage of the beta-amyloid precursor protein to generate amyloid-beta peptide, the principal component of amyloid plaques in the brains of patients suffering from Alzheimer's disease. Here, we review the identification of gamma-secretase as a protease complex and its assembly and trafficking to its site(s) of cellular function. In reconstitution experiments, gamma-secretase was found to be composed of four integral membrane proteins, presenilin (PS), nicastrin (NCT), PEN-2 and APH-1 that are essential and sufficient for gamma-secretase activity. PS, which serves as a catalytic subunit of gamma-secretase, was identified as a prototypic member of novel aspartyl proteases of the GxGD type. In human cells, gamma-secretase could be further defined as a heterogeneous activity consisting of distinct complexes that are composed of PS1 or PS2 and APH-1a or APH-1b homologues together with NCT and PEN-2. Using green fluorescent protein as a reporter we localized PS and gamma-secretase activity at the plasma membrane and endosomes. Investigation of gamma-secretase complex assembly in knockdown and knockout cells of the individual subunits allowed us to develop a model of complex assembly in which NCT and APH-1 first stabilize PS before PEN-2 assembles as the last component. Furthermore, we could map domains in PS and PEN-2 that govern assembly and trafficking of the complex. Finally, Rer1 was identified as a PEN-2-binding protein that serves a role as an auxiliary factor for gamma-secretase complex assembly. Copyright (c) 2006 S. Karger AG, Basel

    Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer’s disease

    Get PDF
    Molecular chaperones and co-chaperones, which are part of the protein quality control machinery, have been shown to regulate distinct aspects of Alzheimer’s Disease (AD) pathology in multiple ways. Notably, the co-chaperone STI1, which presents increased levels in AD, can protect mammalian neurons from amyloid-β toxicity in vitro and reduced STI1 levels worsen Aβ toxicity in C. elegans. However, whether increased STI1 levels can protect neurons in vivo remains unknown. We determined that overexpression of STI1 and/or Hsp90 protected C. elegans expressing Aβ(3–42) against Aβ-mediated paralysis. Mammalian neurons were also protected by elevated levels of endogenous STI1 in vitro, and this effect was mainly due to extracellular STI1. Surprisingly, in the 5xFAD mouse model of AD, by overexpressing STI1, we find increased amyloid burden, which amplifies neurotoxicity and worsens spatial memory deficits in these mutants. Increased levels of STI1 disturbed the expression of Aβ-regulating enzymes (BACE1 and MMP-2), suggesting potential mechanisms by which amyloid burden is increased in mice. Notably, we observed that STI1 accumulates in dense-core AD plaques in both 5xFAD mice and human brain tissue. Our findings suggest that elevated levels of STI1 contribute to Aβ accumulation, and that STI1 is deposited in AD plaques in mice and humans. We conclude that despite the protective effects of STI1 in C. elegans and in mammalian cultured neurons, in vivo, the predominant effect of elevated STI1 is deleterious in AD

    AIP4/Itch Regulates Notch Receptor Degradation in the Absence of Ligand

    Get PDF
    International audienceBACKGROUND:The regulation of Notch signaling heavily relies on ubiquitination events. Drosophila Su(dx), a member of the HECT family of ubiquitin-ligases, has been described as a negative regulator of Notch signaling, acting on the post-endocytic sorting of Notch. The mammalian ortholog of Su(dx), Itch/AIP4, has been shown to have multiple substrates, including Notch, but the precise events regulated by Itch/AIP4 in the Notch pathway have not been identified yet.METHODOLOGY/PRINCIPAL FINDINGS:Using Itch-/- fibroblasts expressing the Notch1 receptor, we show that Itch is not necessary for Notch activation, but rather for controlling the degradation of Notch in the absence of ligand. Itch is indeed required after the early steps of Notch endocytosis to target it to the lysosomes where it is degraded. Furthermore Itch/AIP4 catalyzes Notch polyubiquitination through unusual K29-linked chains. We also demonstrate that although Notch is associated with Itch/AIP4 in cells, their interaction is not detectable in vitro and thus requires either a post-translational modification, or a bridging factor that remains to be identified.CONCLUSIONS/SIGNIFICANCE:Taken together our results identify a specific step of Notch regulation in the absence of any activation and underline differences between mammalian and Drosophila Notch pathways

    Primary care patients reporting concerns about their gambling frequently have other co-occurring lifestyle and mental health issues

    Get PDF
    BACKGROUND: Problem gambling often goes undetected by family physicians but may be associated with stress-related medical problems as well as mental disorders and substance abuse. Family physicians are often first in line to identify these problems and to provide a proper referral. The aim of this study was to compare a group of primary care patients who identified concerns with their gambling behavior with the total population of screened patients in relation to co-morbidity of other lifestyle risk factors or mental health issues. METHODS: This is a cross sectional study comparing patients identified as worrying about their gambling behavior with the total screened patient population for co morbidity. The setting was 51 urban and rural New Zealand practices. Participants were consecutive adult patients per practice (N = 2,536) who completed a brief multi-item tool screening primary care patients for lifestyle risk factors and mental health problems (smoking, alcohol and drug misuse, problem gambling, depression, anxiety, abuse, anger). Data analysis used descriptive statistics and non-parametric binomial tests with adjusting for clustering by practitioner using STATA survey analysis. RESULTS: Approximately 3/100 (3%) answered yes to the gambling question. Those worried about gambling more likely to be male OR 1.85 (95% CI 1.1 to 3.1). Increasing age reduced likelihood of gambling concerns – logistic regression for complex survey data OR = 0.99 (CI 95% 0.97 to 0.99) p = 0.04 for each year older. Patients concerned about gambling were significantly more likely (all p < 0.0001) to have concerns about their smoking, use of recreational drugs, and alcohol. Similarly there were more likely to indicate problems with depression, anxiety and anger control. No significant relationship with gambling worries was found for abuse, physical inactivity or weight concerns. Patients expressing concerns about gambling were significantly more likely to want help with smoking, other drug use, depression and anxiety. CONCLUSION: Our questionnaire identifies patients who express a need for help with gambling and other lifestyle and mental health issues. Screening for gambling in primary care has the potential to identify individuals with multiple co-occurring disorders

    New semiquantitative ultrasonographic score for peripheral arterial disease assessment and its association with cardiovascular risk factors

    Get PDF
    The data concerning the distribution, extent and progression of peripheral arterial disease (PAD), as well as its association with traditional cardiovascular (CV) risk factors, have generally been obtained from studies of patients in advanced stages of the disease undergoing surgical or endovascular treatment. In this study, we have introduced a new semiquantitative ultrasonographic score (ultrasonographic lower limb atherosclerosis (ULLA) score) that is able to categorize lower limb atherosclerotic lesions at all stages of PAD. We then associated these ultrasonographic categories with a CV risk profile. We enrolled 320 consecutive subjects with symptoms suggestive of PAD or with known CV risk factors referring to our angiology unit between 1 July 2014 and 30 June 2015 for ultrasonographic evaluation of the lower limb arteries. Femoropopliteal and run-off segments were categorized together and separately based on their ultrasonographic characteristics. In univariate and multivariate analyses, the ULLA scores were significantly associated with the main CV risk factors, that is, age, male gender, cigarette smoking, arterial hypertension, diabetes, dyslipidemia, sedentary lifestyle, previous CV events and family history of CV disease, and also confirming the specific association of single risk factors with different segments of lower limb arteries. The proposed ULLA score enables a complete evaluation of the entire lower limb atherosclerotic burden, extending the results concerning the association of PAD with CV risk factors to all stages of the disease, including the early stages. It can be feasible that this new score will facilitate better evaluation of the progression of PAD and its prospective role in CV risk stratification

    Phosphorylation of Nicastrin by SGK1 Leads to Its Degradation through Lysosomal and Proteasomal Pathways

    Get PDF
    The gamma-secretase complex is involved in the intramembranous proteolysis of a variety of substrates, including the amyloid precursor protein and the Notch receptor. Nicastrin (NCT) is an essential component of the gamma-secretase complex and functions as a receptor for gamma-secretase substrates. In this study, we determined that serum- and glucocorticoid-induced protein kinase 1 (SGK1) markedly reduced the protein stability of NCT. The SGK1 kinase activity was decisive for NCT degradation and endogenous SGK1 inhibited gamma-secretase activity. SGK1 downregulates NCT protein levels via proteasomal and lysosomal pathways. Furthermore, SGK1 directly bound to and phosphorylated NCT on Ser437, thereby promoting protein degradation. Collectively, our findings indicate that SGK1 is a gamma-secretase regulator presumably effective through phosphorylation and degradation of NCT

    Intrinsic Determinants of Aβ12–24 pH-Dependent Self-Assembly Revealed by Combined Computational and Experimental Studies

    Get PDF
    The propensity of amyloid- (A) peptide to self-assemble into highly ordered amyloid structures lies at the core of their accumulation in the brain during Alzheimer's disease. By using all-atom explicit solvent replica exchange molecular dynamics simulations, we elucidated at the atomic level the intrinsic determinants of the pH-dependent dimerization of the central hydrophobic segment A and related these with the propensity to form amyloid fibrils measured by experimental tools such as atomic force microscopy and fluorescence. The process of A dimerization was evaluated in terms of free energy landscape, side-chain two-dimensional contact probability maps, -sheet registries, potential mean force as a function of inter-chain distances, secondary structure development and radial solvation distributions. We showed that dimerization is a key event in A amyloid formation; it is highly prompted in the order of pH 5.02.98.4 and determines further amyloid growth. The dimerization is governed by a dynamic interplay of hydrophobic, electrostatic and solvation interactions permitting some variability of -sheets at each pH. These results provide atomistic insight into the complex process of molecular recognition detrimental for amyloid growth and pave the way for better understanding of the molecular basis of amyloid diseases

    Increased Serum and Musculotendinous Fibrogenic Proteins following Persistent Low-Grade Inflammation in a Rat Model of Long-Term Upper Extremity Overuse.

    Get PDF
    We examined the relationship between grip strength declines and muscle-tendon responses induced by long-term performance of a high-repetition, low-force (HRLF) reaching task in rats. We hypothesized that grip strength declines would correlate with inflammation, fibrosis and degradation in flexor digitorum muscles and tendons. Grip strength declined after training, and further in weeks 18 and 24, in reach limbs of HRLF rats. Flexor digitorum tissues of reach limbs showed low-grade increases in inflammatory cytokines: IL-1β after training and in week 18, IL-1α in week 18, TNF-α and IL-6 after training and in week 24, and IL-10 in week 24, with greater increases in tendons than muscles. Similar cytokine increases were detected in serum with HRLF: IL-1α and IL-10 in week 18, and TNF-α and IL-6 in week 24. Grip strength correlated inversely with IL-6 in muscles, tendons and serum, and TNF-α in muscles and serum. Four fibrogenic proteins, TGFB1, CTGF, PDGFab and PDGFbb, and hydroxyproline, a marker of collagen synthesis, increased in serum in HRLF weeks 18 or 24, concomitant with epitendon thickening, increased muscle and tendon TGFB1 and CTGF. A collagenolytic gelatinase, MMP2, increased by week 18 in serum, tendons and muscles of HRLF rats. Grip strength correlated inversely with TGFB1 in muscles, tendons and serum; with CTGF-immunoreactive fibroblasts in tendons; and with MMP2 in tendons and serum. Thus, motor declines correlated with low-grade systemic and musculotendinous inflammation throughout task performance, and increased fibrogenic and degradative proteins with prolonged task performance. Serum TNF-α, IL-6, TGFB1, CTGF and MMP2 may serve as serum biomarkers of work-related musculoskeletal disorders, although further studies in humans are needed

    The role of morphine in regulation of cancer cell growth

    Get PDF
    Morphine is considered the “gold standard” for relieving pain and is currently one of the most effective drugs available clinically for the management of severe pain associated with cancer. In addition to its use in the treatment of pain, morphine appears to be important in the regulation of neoplastic tissue. Although morphine acts directly on the central nervous system to relieve pain, its activities on peripheral tissues are responsible for many of the secondary complications. Therefore, understanding the impact, other than pain control, of morphine on cancer treatment is extremely important. The effect of morphine on tumor growth is still contradictory, as both growth-promoting and growth-inhibiting effects have been observed. Accumulating evidence suggests that morphine can affect proliferation and migration of tumor cells as well as angiogenesis. Various signaling pathways have been suggested to be involved in these extra-analgesic effects of morphine. Suppression of immune system by morphine is an additional complication. This review provides an update on the influence of morphine on the growth and migration potential of tumor cells

    The ongoing pursuit of neuroprotective therapies in Parkinson disease

    Get PDF
    Many agents developed for neuroprotective treatment of Parkinson disease (PD) have shown great promise in the laboratory, but none have translated to positive results in patients with PD. Potential neuroprotective drugs, such as ubiquinone, creatine and PYM50028, have failed to show any clinical benefits in recent high-profile clinical trials. This 'failure to translate' is likely to be related primarily to our incomplete understanding of the pathogenic mechanisms underlying PD, and excessive reliance on data from toxin-based animal models to judge which agents should be selected for clinical trials. Restricted resources inevitably mean that difficult compromises must be made in terms of trial design, and reliable estimation of efficacy is further hampered by the absence of validated biomarkers of disease progression. Drug development in PD dementia has been mostly unsuccessful; however, emerging biochemical, genetic and pathological evidence suggests a link between tau and amyloid-β deposition and cognitive decline in PD, potentially opening up new possibilities for therapeutic intervention. This Review discusses the most important 'druggable' disease mechanisms in PD, as well as the most-promising drugs that are being evaluated for their potential efficiency in treatment of motor and cognitive impairments in PD
    corecore