18 research outputs found

    Methylglyoxal induces p53 activation and inhibits mTORC1 in human umbilical vein endothelial cells

    Get PDF
    Methylglyoxal (MGO), a precursor of advanced glycation end products (AGEs), is regarded as a pivotal mediator of vascular damage in patients with diabetes. We have previously reported that MGO induces transcriptional changes compatible with p53 activation in cultured human endothelial cells. To further substantiate this finding and to explore the underlying mechanisms and possible consequences of p53 activation, we aimed (1) to provide direct evidence for p53 activation in MGO-treated human umbilical vein endothelial cells (HUVECs), (2) to assess putative mechanisms by which this occurs, (3) to analyze down-stream effects on mTOR and autophagy pathways, and (4) to assess the potential benefit of carnosine herein. Exposure of HUVECs to 800 mu M of MGO for 5 h induced p53 phosphorylation. This was paralleled by an increase in TUNEL and gamma-H2AX positive cells, indicative for DNA damage. Compatible with p53 activation, MGO treatment resulted in cell cycle arrest, inhibition of mTORC1 and induction of autophagy. Carnosine co-treatment did not counteract MGO-driven effects. In conclusion, our results demonstrate that MGO elicits DNA damage and p53 activation in HUVECs, resulting in modulation of downstream pathways, e.g. mTORC1

    Urinary Carnosinase-1 Excretion is Associated with Urinary Carnosine Depletion and Risk of Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Cohort Study

    Get PDF
    Carnosine affords protection against oxidative and carbonyl stress, yet high concentrations of the carnosinase-1 enzyme may limit this. We recently reported that high urinary carnosinase-1 is associated with kidney function decline and albuminuria in patients with chronic kidney disease. We prospectively investigated whether urinary carnosinase-1 is associated with a high risk for development of late graft failure in kidney transplant recipients (KTRs). Carnosine and carnosinase-1 were measured in 24 h urine in a longitudinal cohort of 703 stable KTRs and 257 healthy controls. Cox regression was used to analyze the prospective data. Urinary carnosine excretions were significantly decreased in KTRs (26.5 [IQR 21.4-33.3] µmol/24 h versus 34.8 [IQR 25.6-46.8] µmol/24 h; p < 0.001). In KTRs, high urinary carnosinase-1 concentrations were associated with increased risk of undetectable urinary carnosine (OR 1.24, 95%CI [1.06-1.45]; p = 0.007). During median follow-up for 5.3 [4.5-6.0] years, 84 (12%) KTRs developed graft failure. In Cox regression analyses, high urinary carnosinase-1 excretions were associated with increased risk of graft failure (HR 1.73, 95%CI [1.44-2.08]; p < 0.001) independent of potential confounders. Since urinary carnosine is depleted and urinary carnosinase-1 imparts a higher risk for graft failure in KTRs, future studies determining the potential of carnosine supplementation in these patients are warranted

    Human carnosinase 1 overexpression aggravates diabetes and renal impairment in BTBR(Ob/Ob)mice

    Get PDF
    Objective: To assess the influence of serum carnosinase (CN1) on the course of diabetic kidney disease (DKD). Methods: hCN1 transgenic (TG) mice were generated in a BTBROb/Ob genetic background to allow the spontaneous development of DKD in the presence of serum carnosinase. The influence of serum CN1 expression on obesity, hyperglycemia, and renal impairment was assessed. We also studied if aggravation of renal impairment in hCN1 TG BTBROb/Ob mice leads to changes in the renal transcriptome as compared with wild-type BTBROb/Ob mice. Results: hCN1 was detected in the serum and urine of mice from two different hCN1 TG lines. The transgene was expressed in the liver but not in the kidney. High CN1 expression was associated with low plasma and renal carnosine concentrations, even after oral carnosine supplementation. Obese hCN1 transgenic BTBROb/Ob mice displayed significantly higher levels of glycated hemoglobin, glycosuria, proteinuria, and increased albumin-creatinine ratios (1104 ± 696 vs 492.1 ± 282.2 μg/mg) accompanied by an increased glomerular tuft area and renal corpuscle size. Gene-expression profiling of renal tissue disclosed hierarchical clustering between BTBROb/Wt, BTBROb/Ob, and hCN1 BTBROb/Ob mice. Along with aggravation of the DKD phenotype, 26 altered genes have been found in obese hCN1 transgenic mice; among them claudin-1, thrombospondin-1, nephronectin, and peroxisome proliferator–activated receptor-alpha have been reported to play essential roles in DKD. Conclusions: Our data support a role for serum carnosinase 1 in the progression of DKD. Whether this is mainly attributed to the changes in renal carnosine concentrations warrants further studies. Key messages: Increased carnosinase 1 (CN1) is associated with diabetic kidney disease (DKD).BTBROb/Ob mice with human CN1 develop a more aggravated DKD phenotype.Microarray revealed alterations by CN1 which are not altered by hyperglycemia.These genes have been described to play essential roles in DKD.Inhibiting CN1 could be beneficial in DKD

    Methylglyoxal down-regulates the expression of cell cycle associated genes and activates the p53 pathway in human umbilical vein endothelial cells

    Get PDF
    Abstract Although methylglyoxal (MGO) has emerged as key mediator of diabetic microvascular complications, the influence of MGO on the vascular transcriptome has not thoroughly been assessed. Since diabetes is associated with low grade inflammation causing sustained nuclear factor-kappa B (NF-κB) activation, the current study addressed 1) to what extent MGO changes the transcriptome of human umbilical vein endothelial cells (HUVECs) exposed to an inflammatory milieu, 2) what are the dominant pathways by which these changes occur and 3) to what extent is this affected by carnosine, a putative scavenger of MGO. Microarray analysis revealed that exposure of HUVECs to high MGO concentrations significantly changes gene expression, characterized by prominent down-regulation of cell cycle associated genes and up-regulation of heme oxygenase-1 (HO-1). KEGG-based pathway analysis identified six significantly enriched pathways of which the p53 pathway was the most affected. No significant enrichment of inflammatory pathways was found, yet, MGO did inhibit VCAM-1 expression in Western blot analysis. Carnosine significantly counteracted MGO-mediated changes in a subset of differentially expressed genes. Collectively, our results suggest that MGO initiates distinct transcriptional changes in cell cycle/apoptosis genes, which may explain MGO toxicity at high concentrations. MGO did not augment TNF-α induced inflammation

    Carnosine Attenuates the Development of both Type 2 Diabetes and Diabetic Nephropathy in BTBR ob/ob Mice

    Get PDF
    We previously demonstrated that polymorphisms in the carnosinase-1 gene (CNDP1) determine the risk of nephropathy in type 2 diabetic patients. Carnosine, the substrate of the enzyme encoded by this gene, is considered renoprotective and could possibly be used to treat diabetic nephropathy (DN). In this study, we examined the effect of carnosine treatment in vivo in BTBR (Black and Tan, BRachyuric) ob/ob mice, a type 2 diabetes model which develops a phenotype that closely resembles advanced human DN. Treatment of BTBR ob/ob mice with 4 mM carnosine for 18 weeks reduced plasma glucose and HbA1c, concomitant with elevated insulin and C-peptide levels. Also, albuminuria and kidney weights were reduced in carnosine-treated mice, which showed less glomerular hypertrophy due to a decrease in the surface area of Bowman's capsule and space. Carnosine treatment restored the glomerular ultrastructure without affecting podocyte number, resulted in a modified molecular composition of the expanded mesangial matrix and led to the formation of carnosine-acrolein adducts. Our results demonstrate that treatment with carnosine improves glucose metabolism, albuminuria and pathology in BTBR ob/ob mice. Hence, carnosine could be a novel therapeutic strategy to treat patients with DN and/or be used to prevent DN in patients with diabetes

    Head-to-Head Comparison of Selected Extra- and Intracellular CO-Releasing Molecules on Their CO-Releasing and Anti-Inflammatory Properties

    No full text
    Over the past decade, a variety of carbon monoxide releasing molecules (CORMs) have been developed and tested. Some CORMs spontaneously release CO once in solution, while others require a trigger mechanism to release the bound CO from its molecular complex. The modulation of biological systems by CORMs depends largely on the spatiotemporal release of CO, which likely differs among the different types of CORMs. In spontaneously releasing CORMs, CO is released extracellularly and crosses the cell membrane to interact with intracellular targets. Other CORMs can directly release CO intracellularly, which may be a more efficient method to modulate biological systems. In the present study, we compared the efficacy of extracellular and intracellular CO-releasing CORMs that either release CO spontaneously or require an enzymatic trigger. The efficacy of such CORMs to modulate HO-1 and VCAM-1 expression in TNF-alpha-stimulated human umbilical vein endothelial cells (HUVEC) was evaluated

    Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models

    No full text
    Within the last years, the use of stem cells (embryonic, induced pluripotent stem cells, or hematopoietic stem cells), Progenitor cells (e.g., endothelial progenitor cells), and most intensely mesenchymal stromal cells (MSC) has emerged as a promising cell-based therapy for several diseases including nephropathy. For patients with end-stage renal disease (ESRD), dialysis or finally organ transplantation are the only therapeutic modalities available. Since ESRD is associated with a high healthcare expenditure, MSC therapy represents an innovative approach. In a variety of preclinical and clinical studies, MSC have shown to exert renoprotective properties, mediated mainly by paracrine effects, immunomodulation, regulation of inflammation, secretion of several trophic factors, and possibly differentiation to renal precursors. However, studies are highly diverse; thus, knowledge is still limited regarding the exact mode of action, source of MSC in comparison to other stem cell types, administration route and dose, tracking of cells and documentation of therapeutic efficacy by new imaging techniques and tissue visualization. The aim of this review is to provide a summary of published studies of stem cell therapy in acute and chronic kidney injury, diabetic nephropathy, polycystic kidney disease, and kidney transplantation. Preclinical studies with allogeneic or xenogeneic cell therapy were first addressed, followed by a summary of clinical trials carried out with autologous or allogeneic hMSC. Studies were analyzed with respect to source of cell type, mechanism of action etc

    Influence of carnosine and carnosinase-1 on diabetes-induced afferent arteriole vasodilation:implications for glomerular hemodynamics

    Get PDF
    Dysregulation in glomerular hemodynamics favors hyperfiltration in diabetic kidney disease (DKD). Although carnosine supplementation ameliorates features of DKD, its effect on glomerular vasoregulation is not known. We assessed the influence of carnosine and carnosinase-1 (CN1) on afferent glomerular arteriole vasodilation and its association with glomerular size, hypertrophy, and nephrin expression in diabetic BTBRob/ob mice. Two cohorts of mice including appropriate controls were studied: i.e., diabetic mice that received oral carnosine supplementation (cohort 1) and human (h)CN1 transgenic (TG) diabetic mice (cohort 2). The lumen area ratio (LAR) of the afferent arterioles and glomerular parameters were measured by conventional histology. Three-dimensional analysis using a tissue clearing strategy was also used. In both cohorts, LAR was significantly larger in diabetic BTBRob/ob versus nondiabetic BTBRwt/ob mice (0.41?? 0.05 vs. 0.26 ?? 0.07, P < 0.0001 and 0.42 ?? 0.06 vs. 0.29 ?? 0.04, P < 0.0001) and associated with glomerular size (cohort 1: r = 0.55, P = 0.001 and cohort 2: r = 0.89, P < 0.0001). LAR was partially normalized by oral carnosine supplementation (0.34 ?? 0.05 vs. 0.41?? 0.05, P = 0.004) but did not differ between hCN1 TG and wild-type BTBRob/ob mice. In hCN1 TG mice, serum CN1 concentrations correlated with LAR (r = 0.90, P = 0.006). Diabetic mice displayed decreased nephrin expression and increased glomerular hypertrophy. This was not significantly different in hCN1 TG BTBRob/ob mice (P = 0.06 and P = 0.08, respectively). In conclusion, carnosine and CN1 may affect intraglomerular pressure in an opposing manner through the regulation of afferent arteriolar tone. This study corroborates previous findings on the role of carnosine in the progression of DKD. NEW & NOTEWORTHY Dysregulation in glomerular hemodynamics favors hyperfiltration in diabetic kidney disease (DKD). Although carnosine supplementation ameliorates features of DKD, its effect on glomerular vasoregulation is not known. We assessed the influence of carnosine and carnosinase-1 (CN1) on afferent glomerular arteriole vasodilation and its association with glomerular size, hypertrophy, and nephrin expression in diabetic BTBRob/ob mice. Our results provide evidence that carnosine feeding and CN1 overexpression likely affect intraglomerular pressure through vasoregulation of the afferent arteriole

    Identification and characterisation of carnostatine (SAN9812), a potent and selective carnosinase (CN1) inhibitor with in vivo activity

    Get PDF
    Carnosinase 1 (CN1) has been postulated to be a susceptibility factor for developing diabetic nephropathy (DN). Although its major substrate, carnosine, is beneficial in rodent models of DN, translation of these findings to humans has been hampered by high CN1 activity in human serum resulting in rapid degradation of carnosine. To overcome this hurdle, we screened a protease-directed small-molecule library for inhibitors of human recombinant CN1. We identified SAN9812 as a potent and highly selective inhibitor of CN1 activity with a K-i of 11nM. It also inhibited CN1 activity in human serum and serum of transgenic mice-overexpressing human CN1. Subcutaneous administration of 30mg/kg SAN9812 led to a sustained reduction in circulating CN1 activity in human CN1 transgenic (TG) mice. Simultaneous administration of carnosine and SAN9812 increased carnosine levels in plasma and kidney by up to 100-fold compared to treatment-naive CN1-overexpressing mice. To our knowledge, this is the first study reporting on a potent and selective CN1 inhibitor with in vivo activity. SAN9812, also called carnostatine, may be used to increase renal carnosine concentration as a potential therapeutic modality for renal diseases linked to glycoxidative conditions
    corecore