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Abstract

Objective To assess the influence of serum carnosinase (CN1) on the course of diabetic kidney disease (DKD).

Methods hCN1 transgenic (TG) mice were generated in a BTBR®”©" genetic background to allow the spontaneous
development of DKD in the presence of serum carnosinase. The influence of serum CNI1 expression on obesity,
hyperglycemia, and renal impairment was assessed. We also studied if aggravation of renal impairment in hCN1 TG
BTBR°”°" mice leads to changes in the renal transcriptome as compared with wild-type BTBR®”°® mice.

Results hCN1 was detected in the serum and urine of mice from two different hCN1 TG lines. The transgene was
expressed in the liver but not in the kidney. High CN1 expression was associated with low plasma and renal
carnosine concentrations, even after oral carnosine supplementation. Obese hCN1 transgenic BTBR?™°® mice
displayed significantly higher levels of glycated hemoglobin, glycosuria, proteinuria, and increased albumin-
creatinine ratios (1104 + 696 vs 492.1 + 282.2 pug/mg) accompanied by an increased glomerular tuft area and renal
corpuscle size. Gene-expression profiling of renal tissue disclosed hierarchical clustering between BTBRO*W,
BTBRP”°" and hCN1 BTBR®"°" mice. Along with aggravation of the DKD phenotype, 26 altered genes have
been found in obese hCNI transgenic mice; among them claudin-1, thrombospondin-1, nephronectin, and peroxisome
proliferator—activated receptor-alpha have been reported to play essential roles in DKD.

Conclusions Our data support a role for serum carnosinase 1 in the progression of DKD. Whether this is mainly attributed to the
changes in renal carnosine concentrations warrants further studies.

Jiedong Qiu, Thomas Albrecht and Shiqi Zhang contributed equally to
this work.

An abstract of this work has been awarded a poster prize on the congress
of'the German Diabetes Association (DDG) 2018 and on the International
Congress on Carnosine and Anserine (ICCA) 2017 and has been pre-
sented on the congress of the European Association for the Study of
Diabetes (EASD) 2018.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00109-020-01957-0) contains supplementary
material, which is available to authorized users.

P4 Jiedong Qiu 3 Department of Endocrinology, The First Affiliated Hospital of Anhui

jiedong.qiu@medma.uni-heidelberg.de

5th Medical Department, University Hospital Mannheim, Heidelberg
University, Mannheim, Germany

Department of Pathology and Medical Biology, University Medical
Centre Groningen and University of Groningen,
Groningen, The Netherlands

Medical University, Hefei, China

Central Medical Research Facility ZMF, University Hospital
Mannheim, Heidelberg University, Mannheim, Germany

Institute of Pathology, University Medical Center of the Johannes
Gutenberg University Mainz, Mainz, Germany

European Center for Angioscience, Mannheim, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00109-020-01957-0&domain=pdf
http://orcid.org/0000-0002-9835-8398
https://doi.org/10.1007/s00109-020-01957-0
mailto:jiedong.qiu@medma.uni-heidelberg.de

1334

J Mol Med (2020) 98:1333-1346

Key messages

» Increased carnosinase 1 (CN1) is associated with diabetic kidney disease (DKD).
«  BTBR®"°" mice with human CN1 develop a more aggravated DKD phenotype.
*  Microarray revealed alterations by CN1 which are not altered by hyperglycemia.
» These genes have been described to play essential roles in DKD.

* Inhibiting CN1 could be beneficial in DKD.

Keywords Diabetic nephropathy - Carnosine - Antioxidants - Transgenic mice - Gene expression profiling

Abbreviations

CN1  Carnosinase 1
CN2  Carnosinase 2
CKD  Chronic kidney disease
DKD Diabetic kidney disease

TG Transgenic
SD Standard deviation

Introduction

The global prevalence of type 2 diabetes is growing to epi-
demic proportions, affecting approximately 642 million adults
by the year 2040 [1]. Approximately one-third of the patients
with diabetes will develop DKD, making DKD the leading
cause of chronic kidney disease (CKD) and end-stage kidney
disease (ESKD) worldwide [2, 3].

Among the reported susceptibility loci for developing
DKD, we identified serum carnosinase 1 (CN1, EC
3.4.13.20) and its substrate carnosine as modifiers of DKD.
The possibility that carnosine may affect diabetic complica-
tions emerged from the finding that a trinucleotide (CTG),
repeat polymorphism in the gene encoding CN1 was associ-
ated with susceptibility for developing DKD in type 2 diabetic
patients [4, 5]. Other studies have confirmed this association
[6-8], which seems to be stronger in females [7] than in male
patients. The latter might be explained by lower serum CN1
activity/concentration generally found in male subjects [9].

It has been postulated that high serum CN1 expression may
deplete tissue carnosine concentrations and render tissue more
vulnerable to hyperglycemia mediated damage [10, 11].
Because serum CNI1 concentrations are partly determined by
the (CTG), polymorphism [5], this may explain the genetic
association with DKD. However, a formal proof that serum
CN1 directly affects the course of DKD is lacking. Human
CN1 transgenic db/db mice developed a more severe diabetic
phenotype compared to wild type db/db littermates, yet DKD
did not differ between transgenic and wild-type mice [12].
Because db/db mice show only a mild renal phenotype of
DKD, the influence of a disease modifier such as CN1 could
have been masked. Even though a number of rodent studies
already suggest a beneficial effect of carnosine supplementation
on renal function impairment [12—17], more severe DKD

@ Springer

models are warranted to better understand the role of the
carnosine—carnosinase system in the progression of DKD. In
the present study, we assessed the impact of serum CN1 ex-
pression on the course of DKD by generating hCN1 TG mice
on a BTBR®”°" background and studying the development of
obesity, diabetes, and renal impairment.

Research design and methods
Generation of transgenic mice

Human CNDP1 TG mice were generated in the BTBR"Y"
(black and tan, brachyuric) background, as previously de-
scribed [12]. The transgene TTP-hCNDP1 and the ob/ob mu-
tation were genotyped by PCRs. Mice were bred from the
initial founders to obtain the experimental groups.

Mice (n = 9-10 per group) were randomly allocated and
were housed in a specific pathogen-free, regularly controlled
animal house of the University Heidelberg at22 °Cina 12 h
light/dark cycle and fed regular chow and water ad libitum.
Starting with the 8th week of age, mortality, fasting plasma
glucose, and body weight (BW) were recorded weekly in the
morning until the 24th week of age. Glycated hemoglobin
(HbAlc) percentage was measured every 8 weeks using the
in2it A1C system (Bio-Rad Hercules, CA). At week 24 of age,
blood samples were collected from the orbital plexus under
anesthesia before sacrifice, and serum was isolated by centri-
fugation. To obtain morning spot urine samples, animals were
placed in metabolic cages overnight.

Anserine and carnosine concentrations

hCN1 TG BTBRVY®® and control BTBR™Y°" mice (1 = 6 per
group) were supplemented with 4 mM carnosine in drinking
water while drinking ad libitum. Non-TG and hCN1 TG
BTBR™Y°" mice served as controls (n = 7 and 6 per group).
After 2 weeks, mice were sacrificed. Carnosine concentration
was measured as previously described [18].
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Serum CN1 concentration and activity

CNI1 concentrations in serum (n = 12 and 15 per group) were
measured by a house-made sandwich ELISA as described
previously [19]. CN1 activity was measured as previously
described [18].

Histology and immunohistology

Mice (n = 7-9 per group) were sacrificed at week 24 by vas-
cular perfusion fixation through the aorta with 4% paraformal-
dehyde under ketamine/xylazine anesthesia. Right side kid-
neys were isolated afterward. Left side kidneys were snap-
frozen and preserved before perfusion. Hereafter, all kidneys
were weighed. Tissues fixed with paraformaldehyde were em-
bedded in paraffin, cut in 2.5 um sections, deparaffinized with
xylol, and dehydrated using an ethanol gradient. Sections
were stained with periodic acid-Schiff (PAS) and hematoxylin
and eosin (H&E). Stained slides were digitalized using the
PreciPoint M8 scanner, and area measurement was performed
in ViewPoint software (both from Precipoint Freising,
Germany). Per animal, a minimum of 30 glomeruli was ana-
lyzed. For mesangial matrix expansion, 20 glomeruli per an-
imal were graded on PAS-stained sections using a scoring
system: O for no, 1 for slight, 2 for moderate, and 3 for severe
mesangial expansion.

For immune histology, sections were stained with rabbit
polyclonal anti-CNDP1 antibody (ATLAS/Abcam
Cambridge, UK), rabbit polyclonal anti-C3 antibody (Hycult
HP8012), and Goat anti-rabbit HRP-conjugated IgG antibody
(Santa Cruz, USA). Staining was visualized using red alkaline
phosphatase (Vector Laboratories, USA) as a peroxidase sub-
strate. The sections were counterstained with hematoxylin,
dehydrated with a standard row of alcohol and xylol, then
mounted.

Urine parameters

Glucose, creatinine, and total protein in the urine of the ani-
mals (n = 6-10 per group) at week 22 after overnight meta-
bolic cages were measured using a Cobas ® C311
autoanalyzer after 10 min centrifugation at 300 rpm to remove
possible fecal contaminations. Albumin was determined by a
competitive ELISA.

Microarray

Total RNA (n = 5-7 per group) was prepared using TriZol
(Thermo Fisher Scientific Karlsruhe, Germany) followed by
additional purification using the RNeasy Mini Kit (Qiagen
Hilden, Germany). RNA quality was assessed by capillary
electrophoresis on an Agilent 2100 bioanalyzer. Only RNA
samples with RIN values above 7.0 were used for further

analysis. Gene expression profiling was performed using ar-
rays of Mouse Gene 2.0 ST array from Affymetrix according
to manufacturer’s protocols. All the equipment used was from
the Affymetrix-Company (Affymetrix High Wycombe, UK).

Bioinformatics

A Custom CDF Version 22 with ENTREZ based gene defi-
nitions was used to annotate the arrays [20]. The raw fluores-
cence intensity values were normalized, applying quantile
normalization and RMA background correction. One-way
ANOVA was performed to identify differentially expressed
genes. A false-positive rate of @ = 0.05 with FDR correction
was taken as the level of significance.

Statistics and figures

Data are depicted and described in the text as mean + standard
deviation. The experimental groups were compared using
one-way ANOVA followed by Tukey’s post hoc test. The
comparisons were performed two-tailed, and a p value below
0.05 was considered to be significant. GraphPad Prism ver-
sion 8 for Windows (California USA) was used to create the
figures.

Results
hCN1 expression in TG mice

Two founder lines, i.e., line 4 and line 86, were generated that
significantly differed in serum CN1 concentrations. In line 4,
serum CNI1 concentrations ranged from 51 to 171 pg/ml (n =
15), whereas TG mice derived from line 86 displayed lower
CNI1 concentrations (range: 18 to 98 pug/ml, n = 12) (p <
0.001) (Fig. 1a). Serum CNI1 activity was likewise higher in
TG mice of the former founder line (»p < 0.001) (Fig. 1a).
Urinary CN1 was detected in all TG mice derived from foun-
der 4, albeit this largely varied between individual mice as
detected by western blot (Fig. 1b). In contrast, urinary CN1
in TG mice from line 86 was low, i.e., slightly above or below
the detection limit (data not shown). In immunohistochemis-
try, strong CN1 expression was detected in the liver but not in
the kidney of CN1 transgenic mice of both lines (Fig. 1c).

Depletion of carnosine

To assess to what extent CN1 expression affected CN1 sub-
strates in renal tissue, subgroups of TG and non-TG BTBR®”
W mice (of founder line 4) were orally supplemented with
4 mM L-carnosine for 14 days and compared with
nonsupplemented controls (Fig. 2). Although the mean renal
carnosine concentrations were approximately 8-fold lower in
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Fig.1 Two TG founder lines, i.e.,
line 4 and line 86, were studied
for serum CNI1 concentration and
activity and urinary CN1
expression. a Serum CN1
concentration (panel to the left)
and CN1 activity (n = 12-18 per
transgenic group) are depicted.
The results are expressed as mean
+ SD. T test was used to compare
the line 4 and line 86. *** for p 0 r
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TG mice derived from founder line 4 as compared with their
nonTG littermates, this difference was not significant due to
the high variance (p = 0.69). Renal anserine concentrations
were not different between TG and nonTG mice.

After oral carnosine supplementation, there was a trend in
nonTG mice towards increased renal carnosine and anserine
concentrations, while in TG mice renal carnosine and anserine
concentrations remained low after oral carnosine supplemen-
tation. Similar to renal carnosine concentrations, in plasma,
there was a trend towards a lower carnosine concentration in
TG mice as compared with wild-type mice.

In the brain tissue, the carnosine concentrations were sig-
nificantly lower in TG mice as compared with nonTG litter-
mates. In liver tissue, carnosine could only be detected after
oral supplementation in nonTG mice, while it was not

@ Springer

detected in the liver of TG mice, even after oral carnosine
supplementation (detection limit at 0.001 nmol/mg) (Fig. 2).

Influence of CN1 on the course of DKD

Because of its higher serum CN1 concentration and activity,
we employed TG and nonTG littermates derived from line 4
for all further experiments. Similar results were, however,
generally replicated in a small subset of TG BTBR®”°" mice
derived from line 86 (data not shown). Wildtype (WT) non-
diabetic BTBR®”™!, diabetic nonTG BTBR®”°® (0b/ob) and
diabetic TG BTBR®Y® (TG ob/ob) were followed from week
6 to week 24 after birth. Compared with WT control, body
weight significantly increased in both ob/ob groups (p <
0.0001). TG ob/ob mice developed a significantly lower body
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Fig. 2 hCNI1 transgenic (TG) and
nontransgenic BTBR®”™' mice a
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weight than nonTG ob/ob (p = 0.0036) (Fig. 3). A significant-
ly increased mortality (4/10) was observed for hCN1 TG ob/
ob mice after 18 weeks of observation (p = 0.01) (Fig. 3).
Serum glycated hemoglobin (HbAlc) levels were in-
creased in TG compared with nonTG ob/ob mice by approx-
imately 2% (21 mmol/mol) (p < 0.0001). Similarly, fasting
plasma glucose (FPG) was increased in both diabetic groups
compared with WT controls (p < 0.05), and TG ob/ob mice
had significantly higher FPG than their nontransgenic diabetic
siblings (p < 0.01). Plasma insulin significantly increased in
both diabetic groups with no influence of the transgene herein
(Fig. 3). Glycosuria was not significantly higher in nonTG ob/
ob mice as compared with WT controls. However, in TG ob/
ob mice, it was increased more than 30-fold as compared with

nonTG obese controls (p = 0.01). Proteinuria, expressed as
urinary protein-creatinine ratio, was significantly increased
in both diabetic groups, approximately 2-fold higher in TG
ob/ob as compared with the nonTG ob/ob group (p =
0.0002). Compared with WT controls, urinary albumin-
creatinine ratio (ACR) was increased approximately 5-fold
in ob/ob mice, albeit with a borderline significance of p =
0.09. In TG ob/ob mice, ACR was further increased and sig-
nificantly differed from ob/ob mice (1104 + 694 pg/mg vs
492.1 £282.2 ug/mg, p = 0.01).

Diabetic animals revealed significant mesangial matrix ex-
pansion, enlarged renal corpuscles, glomerular tuft, and in-
creased Bowman’s space. Differences between diabetic TG
ob/ob and nonTG ob/ob were found for the glomerular tuft
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Fig. 3 Wildtype BTBR®®™ (WT), nontransgenic BTBR®”°® (nonTG
ob/ob) and transgenic BTBR®Y°® (TG ob/ob) mice were observed for 18
weeks until the 24th week of age (n = 6-9 per group). Body weight
development, mortality, HbAlc, fasting plasma glucose (FPG), plasma
insulin, glucosuria, albuminuria, and proteinuria are shown. All urinary
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parameters are shown as ratios to creatinine. The data are depicted as
mean = SD. One-way ANOVA followed by Tukey post-hoc test was
used to compare the groups. Mantel-Cox-test was used to compare mor-
tality (n = 9—10 per group). * for p values < 0.05, ** for p values < 0.01,
*** for p values < 0.001 and n.s. for p values > 0.05
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area (6623 + 1257 um? vs 5594 + 575.5 um?, p = 0.04) and
renal corpuscle size with borderline significance (10610 +
1782 um? vs 9231 + 1149 pum?, p = 0.08) (Fig. 4).

In plasma of diabetic animals, no significant difference in
glyoxal and methylglyoxal concentrations were detected.
Although diabetic hCN1 TG mice showed significantly higher
(p < 0.01) 3-deoxyglucosone than their diabetic littermates,
this was not significant compared with the nondiabetic WT
controls (Supplementary data). In line with this, OxyBlot anal-
ysis of renal tissue gave no indication for increased protein
carbonylation in diabetic vs non-diabetic animals
(Supplementary data).

Gene expression profiling of renal tissue

To obtain more mechanistic clues why hCN1 TG mice
displayed a more severe renal phenotype, we performed gene
expression profiling of renal tissue retrieved from WT, hCN1
TG ob/ob, and nonTG ob/ob mice. Hierarchical clustering and
principal component analysis disclosed distinct expression
patterns between the groups (Fig. 5a). The difference in gene
expression profile between diabetic ob/ob and WT mice was
more profound as compared between the two diabetic sub-
groups, as shown by volcano plots and p value distribution
(Fig. 5a).

By applying an adjusted p value < 0.05 (P,q; as adjusted for
multiple testing) and a fold-change (FC) threshold of > 1.5, a
total of 297 transcripts were found to be differentially
expressed in the comparison between ob/ob and WT. In
Table 1, the 15 most upregulated and 15 most downregulated
genes in the comparison ob/ob and WT mice are depicted. In
kidneys of diabetic ob/ob mice, 3-hydroxy-3-methylglutaryl-
coenzyme A synthase 2 (Hmgcs2) was found to be the stron-
gest upregulated gene (7.4-fold upregulated), while histidine
decarboxylase (Hdc) was the most downregulated gene as
compared with their nondiabetic littermates (36-fold down-
regulated). Differences in mRNA expression for Noct, Hyal,
Igf1, and C3 were confirmed by qPCR (Supplementary data).
Immunohistochemistry for C3 was concordant to the qPCR
results (Supplementary data).

For the comparison TG vs. nonTG ob/ob mice, only 26
transcripts were differentially expressed using the criteria de-
fined above (Table 2). Complement factor 7 (C7) was the
most upregulated gene (2.2-fold upregulated), and nocturnin
(Noct) was the most downregulated gene (4.54-fold downreg-
ulated). Differences for Noct, C7, Arrdc2, and Piga between
TG ob/ob and nonTG ob/ob were also confirmed by qPCR,
albeit that not for all genes significance was reached (Fig. 5b).

Gene set enrichment analysis (GSEA) revealed 15 path-
ways to be significantly enriched in ob/ob mice as compared
to WT (6 upregulated, 9 downregulated; normalized enrich-
ment scores (NES) range: — 2.46 to 1.79; P,q; < 0.05)
(Supplementary table 2). The most upregulated (drug

metabolism—cytochrome P450) and the most downregulated
pathways (ECM-receptor interaction) are depicted in Fig. 6 as
heat maps. Of the 15 enriched pathways found in the compar-
ison ob/ob vs. WT mice, 4 pathways were also significantly
upregulated in hCN1 TG ob/ob mice, i.e., cell adhesion mol-
ecules (CAMS) (Pag; = 0.01, NES = 1.8), ECM-receptor inter-
action (P,q; = 0.03, NES = 1.7), focal adhesion (P,q; = 0.02,
NES = 1.54), and Rapl signaling (P,qj = 0.03, NES = 1.5)
(Supplementary table 3).

Discussion

In the present study, we, for the first time, provide evidence
that serum CN1 expression aggravates DKD, reflected by an
increased ACR and more severe renal histology.

We and others have previously reported that the CNDP1
(CTG), polymorphism is associated with susceptibility to de-
velop DKD in patients with type 2 diabetes. The shortest al-
lelic form, associated with low CN1 enzymatic activities and
low serum CN1 concentrations, is more common in patients
without nephropathy. Yet, there is also a fair amount of con-
troversy on the role of CN1 for developing DKD as other
studies failed to replicate these findings in cohorts of different
ethnicities or in patients with type 1 diabetes [21]. Although
the study of Sauerhofer et al. [12] in human CN1 overexpress-
ing db/db mice revealed aggravated diabetes, it failed to show
an effect on DKD. This might be explained by the fact that db/
db mice only develop mild renal damage, which could mask a
possible influence of a disease modifier such as CN1. In con-
trast to db/db mice, novel models such as the BTBR®?°® mice
develop a more severe DKD phenotype with profound albu-
minuria, which, compared with nondiabetic WT mice, is
equivalent to a 10- to 20-fold increase in ACR [22]. Clearly,
this makes the model more robust in terms of renal endpoints
and hence more suitable to study the relative influence of CN1
on DKD.

Plasma and renal carnosine concentrations were strongly
diminished in hCN1 TG mice. Since carnosine has been dem-
onstrated to have several beneficial effects on DKD such as
ROS-/RCS-scavenging and antioxidative properties, deple-
tion of carnosine may lead to an increased formation of
AGE products and therefore might be accountable for the
disease aggravating effect in hCN1 TG mice [13, 15-17, 23,
24]. Although we could not show an increase of glyoxal or
methylglyoxal in our model, we detected a significantly
higher concentration of 3-deoxyglucosone in the plasma of
transgenic diabetic mice. An increased level of 3-
deoxyglucosone has also been detected in patients with dia-
betic kidney disease compared with patients with diabetes
alone [25, 26]. Yet, protein carbonylation in renal tissue did
not differ between diabetic and nondiabetic mice. Based on
previous studies, in which we showed a role for carnosine in
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Fig. 4 Kidneys from BTBR?®™ (WT), nontransgenic BTBR®>°* (ob/
ob) and transgenic BTBROY©® (TG ob/ob) were assessed (n = 6-9 per
group). Renal corpuscle size, tuft area, and Bowman’s capsule space were
measured biometrically in > 30 renal corpuscles per animal. Mesangial
matrix expansion was assessed using a score (0-3) in 20 renal corpuscles

the clearance of acrolein [16] and studies performed by others
using carnosine or carnosine analog to prevent the formation
of 4-hydroxynonenal [27], it was expected that depletion of
carnosine in hCN1 TG ob/ob mice would have a more sub-
stantial impact on aldehyde stress [10, 11, 27]. Since carnosine
seems to increase insulin sensitivity [28], this better explains
the aggravating effect of serum carnosinase 1 on DKD. The

@ Springer

per animal. The data are depicted as mean = SD. One-way ANOVA
followed by Tukey post hoc test was used to compare the groups. * for
p values < 0.05, ** for p values < 0.01, **** for p values < 0.0001 and
n.s. for p values > 0.05. Scale bar: 50 pm

assumption that carnosine influences insulin sensitivity is fur-
ther corroborated by our findings that fasting plasma glucose
is increased in hCN1 TG ob/ob mice despite comparable plas-
ma levels of insulin. Our data also suggest that carnosine is not
essential for insulin secretion, albeit that carnosine supple-
mentation is able to support insulin secretion of pancreatic
islets in this model [16].
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Fig.5 Gene expression profiling analysis in renal tissue from BTBRO”™!

(WT), nontransgenic BTBROY©P (nonTG ob/ob) and transgenic
BTBROY°® (TG ob/ob) was performed (n = 5-7 per group).
Hierarchical clustering analysis followed by a principal component anal-
ysis was performed to compare the similarity between the groups.

Differently expressed genes are plotted in a volcano-plot where the esti-
mate is their change in log®. An adjusted p value below 0.05 was consid-
ered as significant. P value distribution histograms are created using
unadjusted p values. Ultimately, the altered expression of 4 genes
(Noct, C7, Arrdc2, and Piga) could be confirmed by qPCR
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Table 1 ob/ob vs WT

Gene symbol Gene name Fold p value
change
Top 15 most upregulated genes
Hmgcs2 3-Hydroxy-3-methylglutaryl-Coenzyme A synthase 2 2.9086 2.95E-02
Noct Nocturnin 2.4448 2.24E-03
Aldhla7 Aldehyde dehydrogenase family 1, subfamily A7 2.2304 2.10E-03
Slc25a25 Solute carrier family 25 (mitochondrial carrier, 2.1881 4.54E-02
phosphate carrier), member 25
8430408G22Rik  RIKEN c¢DNA 8430408G22 gene 2.0604 4.82E-02
Nat8f5 N-Acetyltransferase 8 (GCNS5-related) family member 5 2.0502 3.72E-02
Clca3al Chloride channel accessory 3A1 1.8610 5.44E-03
C3 Complement component 3 1.8026 1.86E-03
Aldhlal Aldehyde dehydrogenase family 1, subfamily A1l 1.6467 6.86E-03
Col8al Collagen, type VIII, alpha 1 1.5908 1.14E-02
Dpys Dihydropyrimidinase 1.5328 1.20E-03
Gce Group specific component 1.5069 3.68E-04
Ugtla6b UDP glucuronosyltransferase 1 family, polypeptide A6B 1.4530 2.07E-02
Inmt Indolethylamine N-methyltransferase 1.3338 2.53E-02
Arrdc2 Arrestin domain containing 2 1.3095 2.94E-03
Top 15 most downregulated genes
Hdc Histidine decarboxylase —5.2181 1.49E-05
Serpina6 Serine (or cysteine) peptidase inhibitor, clade A, member 6 —3.7336 1.09E-02
Slc22a7 Solute carrier family 22 (organic anion transporter), member 7 — 3.1630 7.05E-03
Akrlcl8 Aldo-keto reductase family 1, member C18 —3.1049 1.63E-04
Haverl Hepatitis A virus cellular receptor 1 —2.9969 9.37E-05
Scdl Stearoyl-coenzyme A desaturase 1 —2.7010 2.22E-03
Akrlcl4 Aldo-keto reductase family 1, member C14 —2.4498 3.68E-02
Secl413 SEC14-like lipid binding 3 —2.3448 1.49E-05
Abcc3 ATP-binding cassette, subfamily C (CFTR/MRP), —2.2403 3.05E-02
member 3
Slc22a26 Solute carrier family 22 (organic cation transporter), —2.1596 1.25E-03
member 26
Meplb Meprin 1 beta —2.1511 9.03E-03
Gbp3 Guanylate binding protein 3 —2.0440 4.27E-03
Slc22al9 Solute carrier family 22 (organic anion transporter), - 1.9632 2.62E-02
member 19
Ace Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 —1.9385 1.48E-02
Slc22a29 Solute carrier family 22. member 29 —1.8935 1.79E-02

Fold change is displayed as log” value

Although we assessed carnosine and anserine concentra-
tion only in nondiabetic hCN1 TG WT and not in diabetic
hCN1 TG ob/ob mice, findings of Peters et al. [29] and
Riedl et al. [30] that CN1 activity is upregulated by reactive
carbonyl- and oxygen species (RCS and ROS) through post-
translational modifications suggest that renal carnosine con-
centrations are even lower in diabetic hCN1 TG ob/ob com-
pared with WT diabetic ob/ob mice.

hCN1 TG ob/ob mice showed a decreased body weight
compared with their nonTG ob/ob littermates. In the work of
Sauerhofer et al. [12], similar findings were made for hCNI1

@ Springer

TG db/db mice. This may be caused by increased glucosuria
in hCN1 TG mice.

Recently Chittka et al. [31] have reported on differences in
glomerular gene expression profiles between diabetic and non-
diabetic BTBR mice in a time-resolved manner. Since we used
the renal cortex instead of morphologically dissected glomer-
uli, this makes direct comparisons difficult. Nonetheless, a
number of the reported differentially expressed genes were
also found in our data set, e.g., Hdc, Hyal, Hmgcs2, C3, albeit
that the total number of DEGs we found was significantly
lower than in the study of Chittka et al. [31]. Although this is
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Table 2 TG ob/ob vs ob/ob
Gene symbol Gene name Fold change  p value
11 upregulated genes
C7 Complement component 7 1.1658 1.0468E-02
Egfl6 EGF-like-domain, multiple 6 0.9664 3.5986E-02
Cldnl Claudin 1 0.9050 2.1179E-02
Tchhll Trichohyalin-like 1 0.7332 3.1491E-02
Thbsl Thrombospondin 1 0.6836 4.3827E-02
Fstl3 Follistatin-like 3 0.6487 2.3288E-02
Tst Thiosulfate sulfurtransferase, mitochondrial 0.6262 4.6175E-02
1700052K11Rik ~ RIKEN c¢DNA 1700052 K11 gene 0.6244 2.8782E-02
6030443J06Rik RIKEN cDNA 6030443 J06 gene 0.6068 4.4283E-02
Npnt Nephronectin 0.6065 1.4660E-02
Tbcld7 TBC1 domain family, member 7 0.5949 4.5364E-02
15 downregulated genes
Noct Nocturnin —2.1807 4.9148E-03
Arrdc2 Arrestin domain containing 2 —1.2999 3.1015E-03
Piga Phosphatidylinositol glycan anchor biosynthesis, class A~ —1.0936 4.6036E-02
Ppara Peroxisome proliferator activated receptor alpha —0.9904 3.0533E-02
Dusp7 Dual specificity phosphatase 7 —0.8921 4.6373E-03
Ip6k2 Inositol hexaphosphate kinase 2 —0.8573 3.8128E-02
Bcl211 BCL2-like 1 -0.7134 2.2437E-02
Fam126b Family with sequence similarity 126, member B —0.7033 4.0931E-02
Cde3711 Cell division cycle 37-like 1 —0.6873 4.5256E-02
Auts2 Autism susceptibility candidate 2 —0.6657 2.6343E-02
Nfkbia Nuclear factor of kappa light polypeptide —0.6497 4.7352E-02

gene enhancer in B cells inhibitor, alpha

1700016C15Rik  RIKEN cDNA 1700016C15 gene —0.6494 2.7854E-02
KIf13 Kruppel-like factor 13 —0.6364 1.0617E-02
Ceng2 Cyclin G2 —0.6010 4.8169E-02
Itch Itchy, E3 ubiquitin protein ligase -0.5971 2.3641E-02

Fold change is displayed as log® value

partly due to the use of different arrays (Mouse Whole
Transcriptome 1.0 ST array vs. Mouse Gene 2.0 ST array),
there remains a large difference in the number of DEGs be-
tween both studies even when considering only coding DEG
(1044 vs. 297). Even though renal and serum parameters, as
well as some of the histological features in renal tissue, were
worse in hCN1 TG mice, the number of DEGs was limited to a
subset of 26 genes with a FC-threshold of > 1.5. We cannot,
however, exclude that the differences in gene expression pro-
file between diabetic TG and nonTG mice would have been
larger if glomeruli were analyzed selectively as previously re-
ported by Chittka et al. [31].

Amongst the 26 DEG in diabetic hCN1 TG mice, many
have been reported to be pivotal in the pathogenesis of DKD.
In an independent experiment, however, significance between
hCN1 TG ob/ob and ob/ob could not be confirmed by qPCR,
albeit that for most of these genes, the direction of change was
similar to the Affymetrix data set. The considerable variation

in gene expression, the relative low fold-change, and the rel-
atively low number of animals (n = 6 per group) in the inde-
pendent confirmatory experiment may explain why signifi-
cance was not reached. The two genes that showed the largest
change in hCN1 TG ob/ob compared with nonTG ob/ob mice
in the Affymetrix data set, i.e., nocturnin (Noct) and arrestin
domain-containing protein 2 (Arrdc2), were also significantly
changed in the independent confirmatory experiment. Noct is
a circadian protein that regulates the cellular transcriptome via
control of poly(A) tail length of RNA transcripts [32]. Why
renal Noct is strongly downregulated in hCN1 TG ob/ob mice,
is currently not known. Our observation that carnosine levels
in cerebral tissue were significantly reduced in hCN1 TG
poses the question as to whether this is also true for
homocarnosine, another substrate of CN1. Because
homocarnosine is considered as a reservoir for GABA, in-
creased CN1 activity may affect GABA homeostasis. This,
in turn, may affect the central circadian pacemaker of the
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Fig. 6 Gene set enrichment analysis was performed on the dataset. From the significantly enriched pathways, the most upregulated and downregulated
according to normalized enrichment score were selected to be shown on a heat map

suprachiasmatic nuclei (SCN) in the brain, which uses GABA
as a principal neurotransmitter [33]. Although further experi-
ments are warranted to substantiate this assumption, it is worth
to mention that Noct regulates metabolic adaptation in brown
adipose tissue [34] and that it may maintain a proper metabolic
balance in the face of metabolic challenges [35]. Hence, the
downregulation of Noct in obese diabetic may further
dysregulate metabolism in BTBR®”® mice.

In conclusion, this study demonstrates that the hCN1
TG BTBR®"°® (ob/ob) mice develop more severe DKD.
Despite this, the influence of the transgene on the renal
transcriptome is limited. It needs to be assessed if the
downregulation of Noct in diabetic animals contributes to
this phenotype. Likewise, the effect of serum CN-1 expres-
sion on homocarnosine concentrations in cerebral tissue

@ Springer

and its relation to Noct expression should be addressed to
better understand if and how CN1 affects metabolic pro-
cesses in these mice.
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