70 research outputs found

    Plasticity, elasticity, and adhesion energy of plant cell walls: nanometrology of lignin loss using atomic force microscopy

    Get PDF
    International audienceThe complex organic polymer, lignin, abundant in plants, prevents the efficient extraction of sugars from the cell walls that is required for large scale biofuel production. Because lignin removal is crucial in overcoming this challenge, the question of how the nanoscale properties of the plant cell ultrastructure correlate with delignification processes is important. Here, we report how distinct molecular domains can be identified and how physical quantities of adhesion energy, elasticity, and plasticity undergo changes, and whether such quantitative observations can be used to characterize delignification. By chemically processing biomass, and employing nanometrology, the various stages of lignin removal are shown to be distinguished through the observed morphochemical and nanomechanical variations. Such spatially resolved correlations between chemistry and nanomechanics during deconstruction not only provide a better understanding of the cell wall architecture but also is vital for devising optimum chemical treatments

    Comparison of Kinetic Models for Gas Damping of Moving Microbeams

    Get PDF
    Numerical investigations of the gas flow structure and the gas-damping force on moving and heated microbeams are carried out using the Navier-Stokes equations with first-order velocity-slip and temperature-jump boundary conditions (the NSSJ method) and two kinetic numerical techniques: the particle-based direct simulation Monte Carlo (DSMC) method, and a deterministic discrete-ordinate solution of the ellipsoidal statistical (ES) kinetic model equation. The gas-damping coefficients on a moving microbeam for quasi-static isothermal conditions are estimated by the three numerical methods for Kn = 0.1-1.0. The NSSJ simulations tend to overestimate the gas-damping coefficient for Knudsen numbers larger than 0.1, whereas the DSMC and ES kinetic approaches are in good agreement for the slip and transitional flow regimes. The flow structure and the Knudsen force are calculated using the ES kinetic model for a heated microbeam over a wide range of Knudsen numbers. The Knudsen force peaks in the transitional regime (Kn ≈ 2), and the numerically predicted variation of the force with Knudsen number is consistent with experimentally observed displacements of the heated microbeam

    Plasmonic Marangoni forces

    Get PDF
    Localized surface-tension-driven forces (microscale Marangoni effect) caused by a temperature inhomogeneity from the decay of optically excited surface plasmons into phonons have been engaged to the actuation of adsorbed and applied liquid on a thin metal film. Microfluidic operations of transport, separation, mixing and sorting have been experimentally and theoretically demonstrated using this all-optical modulation scheme

    Improving the electrostatic field concentration in a negative-permittivity wedge with a grounded bowtie configuration.

    Get PDF
    Two wedges, one made of negative-permittivity material (primary) and another of an ordinary dielectric (auxiliary/secondary), are posed nose-to-nose to form a “bowtie” configuration. This shape is very common and convenient for a number of real-world devices and constructions such as electron microscopes, optical superlenses, and nanotips. In all these structures, the efficient operation and functionality get strongly assisted by the increased electromagnetic power concentration in the vicinity of the edge. Such a field enhancement is attempted with proper choice of the characteristics of the dielectric wedge to increase the field intensity over the cross section of the metamaterial one. A slowly varying field assumption is adopted to formulate approximate solutions to similar structures (sharp and rounded corners). A quality factor has been defined based on the power carried by the supported modal waves, if they are excited by a suitable electric source, in the presence and in the absence of the auxiliary wedge. This quantity expresses the intensity enhancement that could be achieved and is represented in graphs with respect to the dielectric wedge parameters. The characteristics of the secondary component that lead to a maximization of the electric power into the primary one are identified and explained. In particular, periodic variations of the angular extent of the secondary wedge are observed, and the number of maxima is increased with the dielectric permittivity of the constituent material.Peer reviewe

    Near field optical microscopy: a brief review

    No full text

    Plasmon Dispersion in a Multilayer Solid Torus in Terms of Three-Term Vector Recurrence Relations and Matrix Continued Fractions

    Get PDF
    Toroidal confinement, which has played a crucial role in magnetized plasmas and Tokamak physics, is emerging as an effective means to obtain useful electronic and optical response in solids. In particular, excitation of surface plasmons in metal nanorings by photons or electrons finds important applications due to the engendered field distribution and electromagnetic energy confinement. However, in contrast to the case of a plasma, often the solid nanorings are multilayered and/or embedded in a medium. The non-simply connected geometry of the torus results in surface modes that are not linearly independent. A three-term difference equation was recently shown to arise when seeking the nonretarded plasmon dispersion relations for a stratified solid torus (Garapati et al 2017 Phys. Rev. B 95 165422). The reported generalized plasmon dispersion relations are here investigated in terms of the involved matrix continued fractions and their convergence properties including the determinant forms of the dispersion relations obtained for computing the plasmon eigenmodes. We also present the intricacies of the derivation and properties of the Green\u27s function employed to solve the three term amplitude equation that determines the response of the toroidal structure to arbitrary external excitations

    Inside nanomechanical properties of Populus plant cell walls

    No full text
    International audienc
    corecore