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[1] Two wedges, one made of negative-permittivity material (primary) and another of an
ordinary dielectric (auxiliary/secondary), are posed nose-to-nose to form a “bowtie”
configuration. This shape is very common and convenient for a number of real-world
devices and constructions such as electron microscopes, optical superlenses, and
nanotips. In all these structures, the efficient operation and functionality get strongly
assisted by the increased electromagnetic power concentration in the vicinity of the edge.
Such a field enhancement is attempted with proper choice of the characteristics of the
dielectric wedge to increase the field intensity over the cross section of the metamaterial
one. A slowly varying field assumption is adopted to formulate approximate solutions to
similar structures (sharp and rounded corners). A quality factor has been defined based on
the power carried by the supported modal waves, if they are excited by a suitable electric
source, in the presence and in the absence of the auxiliary wedge. This quantity expresses
the intensity enhancement that could be achieved and is represented in graphs with
respect to the dielectric wedge parameters. The characteristics of the secondary
component that lead to a maximization of the electric power into the primary one are
identified and explained. In particular, periodic variations of the angular extent of the
secondary wedge are observed, and the number of maxima is increased with the dielectric
permittivity of the constituent material.
Citation: Valagiannopoulos, C. A. and A. Sihvola (2013), Improving the electrostatic field concentration in a negative-
permittivity wedge with a grounded “bowtie” configuration, Radio Sci., 48, 316–325, doi:10.1002/rds.20035.

1. Introductory Comment
[2] Wedge configurations or structures of sharp or

rounded corners are very commonly utilized in models
of optical devices, electromagnetic designs, and technolo-
gies in the nanoscale. They have attracted considerable
attention, and therefore, they have been both analyzed the-
oretically and implemented experimentally. From the early
1970s [Dobrzynski and Maradudin, 1972; Davis, 1976],
the dispersion relation for a single dielectric corner was
obtained, and the supported electrostatic edge modes were
determined. On the other hand, the singular field devel-
oped along a sharp edge, under electrodynamic regime, has
been investigated in Valagiannopoulos [2009] together with
the smoothing influence of a protecting cover. Furthermore,
numerous structures composed of penetrable or metallic
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edges and prisms with applications in nano-optics of surface
plasmon polaritons have been thoroughly examined in the
study [Zayats et al., 2005]. The developed surface modes
in several canonical geometries with rounded corner inter-
faces between two materials have been investigated in
Wallen et al. [2008], and the accompanying curvature effect
is observed in Passian et al. [2005]. Finally, the electro-
static eigenmodes in a hyperbolic wedge are analytically
determined in Boardman et al. [1985].

[3] In order to increase the experimental effectiveness of
a device composed of sharp or rounded dielectric corners,
it is natural to aim at enhancing the field concentration in
the vicinity of the edge with a number of methods. In par-
ticular, microelectromechanical probes have been assisted
by an electrostatic actuator to decrease the gap width
and reinforce the optical near-field intensity [Iwami et al.,
2006]. Moreover, strongly amplified electromagnetic fields
at moderate distances from a silver/gold wedge have been
reported in Angulo et al. [2011], by manipulating mor-
phology and dielectric environment. In Gramotnev et al.
[2007], it is also demonstrated that during plasmon nanofo-
cusing in a V-shaped tapered gap, the local electric field
experiences much higher concentration than the magnetic
field. Similarly, a sharp metal wedge has been shown to
achieve an efficient adiabatic nanofocusing on a dielectric

316



VALAGIANNOPOULOS AND SIHVOLA: FIELD ENHANCEMENT IN METAMATERIAL WEDGE

Figure 1. The “bowtie” wedge configuration. Two infinite dielectric wedges of different angular extents
are backed by a perfectly conducting (PEC) plane and examined at the electrostatic regime.

substrate [Vernon et al., 2007]. Finally, wedge configurations
are routinely employed to imitate or model the functioning
mechanism of nanotips [Rockstuhl et al., 2009] or electron
microscopes [Zhang and Liu, 2008], where increased field
intensity in the vicinity of the dielectric corners is required
for high scanning performances.

[4] In this work, we analyze, in the electrostatic regime,
the possibility of increasing the electric field magnitude
into a metamaterial (negative-permittivity) sharp wedge. It
becomes feasible with help from another wedge of ordi-
nary dielectric (permittivity larger than unity) which is posed
against the metamaterial structure, by slightly touching its
nose. Similar considerations have been thoroughly analyzed
by prolific publishers in numerous works such as Pendry
et al. [2012], Aubry et al. [2010], Zeng et al. [2011], and
Savage et al. [2012]. The entire three-dimensional (3-D)
configuration is grounded with an infinite perfectly con-
ducting (PEC) plane which dictates a symmetry. We do not
consider a specific excitation since our intention is to exam-
ine the internal (eigen)response of the configuration alone,
isolated from external sources. In other words, to observe
how the structure behaves naturally released from outward
constraints. The electrostatic modes that lead to nontriv-
ial field distribution are determined, and a quality factor
expressing the intensity enhancement into the metamaterial
wedge is defined.

[5] A simplified solution for the same problem is also
obtained when the axial variation of the fields is not signif-
icant (“quasi-3D” case), by using the asymptotic expansion
of the modified Bessel function. Under the same simplifying
assumption, the corresponding hyperbolic wedge problem
is considered, where the edges are rounded. The respec-
tive approximate solution is again derived by employing the
related transformation formulas between the two coordinate
systems (circular cylindrical and elliptic cylindrical). The
same quality factor is defined in the aforementioned sim-
plified cases. The variation of this indicative quantity with
respect to the material and shape parameters are shown and
discussed, revealing certain conclusions for every single of
the regarded configurations.

2. Problem Statement
[6] Consider the structure depicted in Figure 1, where

the used Cartesian (x, y, z) and cylindrical (�, �, z) coordi-
nate systems are also defined. Two infinite dielectric sharp
wedges, backed by an infinite PEC plane (y = 0), are posed
nose-to-nose, forming an asymmetric “bowtie” configura-
tion. The wedge positioned at the rightmost region (region 1)
has an angular extent of �1 and is filled with a plasmonic
substance of relative permittivity �r1 < 0. The left wedge
(region 2) is of angle �2 and its material has relative dielec-
tric constant �r2 > 1. The entire structure is surrounded
by vacuum (region 0), permittivity �0), and the problem is
investigated under the electrostatic regime. We choose to
study a configuration which is nonpenetrable across its lower
half (PEC half-space y < 0), to restrict the value range of the
azimuthal angle � 2 [0, �]. In this way, no periodic solutions
with respect to � are required, and a physical consistency
is retained.

Figure 2. A symbolic typical graph of the left-hand side
(LHS), the right-hand side (RHS) of the dispersion relation
(11), and the tangent line of the LHS at the origin. The cross
point (supported mode) and the vertical asymptote of the
LHS are also shown.
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Figure 3. The hyperbolic “bowtie” configuration. Two infinite dielectric hyperbolic cylinders of
different angular extents are backed by a perfectly conducting (PEC) plane and examined at the
electrostatic regime.

[7] The scope of this work is to examine the effect
of the second wedge (secondary, auxiliary component) on
the field concentration into the first wedge (primary, main
component) in the vicinity of the edge. We are going to
evaluate the modes of the described structure, namely the
permissible electric field distributions over the cross sections
of the objects regardless of the excitation type. In addition,
we will examine certain slightly different considerations
either with respect to the field variation or concerning the
shape of the boundaries.

3. 3-D Exact Solution
3.1. General Formulas

[8] In each region of the regarded configuration, the
electrostatic potential ˆ(�, �, z) obeys the Laplace equation:

r2ˆ(�, �, z) = 0. (1)

If the separation of variables is applied: ˆ(�, �, z) =
f�(�)f�(�)fz(z), it is directly found that the partial solutions
possess the general forms:

f�(�) = A�Ij� (��) + B�Kj�(��), (2)

f�(�) = A� cosh(��) + B� sinh(��), (3)
fz(z) = Az cos(�z) + Bz sin(�z), (4)

where I, K are the modified Bessel functions, j is the imagi-
nary unit, and �, � 2 C. It should be remarked that we make
the assumption that the solution is written in separable form,
which does not mean that other, more complicated, potential
distributions cannot exist. Therefore, whatever formulation
hereinafter is called as “not acceptable” or “non supported,”
implies that it is not compatible with the separation-of-
variables adopted approach; not that it is unnatural or phys-
ically impossible to get developed. Furthermore, due to
the fact that only the fields are dependent on z coordinate
contrary to the configuration, the term “three-dimensional”
could be replaced by the more descriptive one “extruded
two-dimensional.”

[9] In order to avoid exponentially increasing solutions
along the z axis, we restrict the complex spectral parameter
� to real values: � 2 R. In the same way, the solu-
tion Ij�(��) is rejected (A� = 0), since this function is
exponentially increasing for large � regardless of the value
� 2 C. Furthermore, the imaginary part of � should be
zero (=[�] = 0); otherwise, the modified Bessel function
becomes singular at the origin (x, y) = (0, 0): |Kj�(0)| !
+1. Finally, � should be positive since the same function
increases unboundedly for � ! +1 (and � < 0). The
range of the out-of-plane wave number � cannot be con-
fined further since the function Kj�(	) is not even or odd with
respect to 	 .

[10] Due to the presence of the infinite plane, the tangen-
tial components (x, z) of the electric field into regions 1 and
2 should be zero along y = 0 (Figure 1). Therefore, only one
of the two linearly independent azimuthal solutions would
be present in the expressions corresponding to regions 1 and
2. On the other hand, the two axial, z-dependent functions
are present in all the regions and form two solution sets:
one even and one odd with respect to z axis. These two sets
are not coupled each other due to the matching of the fields
along the axial direction.

3.2. Dispersion Equation
[11] The explicit formulas for the electrostatic potential in

each region (0, 1, and 2) are given by:

ˆ0(�, �, z) = Kj� (��) [A0 cosh (� (� – 
 ))

+B0 sinh(� (� – 
 ))]
�

cos(�z)
sin(�z)

�
, (5)

ˆ1(�, �, z) = Kj�(��)B1 sinh(��)
�

cos(�z)
sin(�z)

�
, (6)

ˆ2(�, �, z) = Kj� (��)B2 sinh(�(� – �))
�

cos(�z)
sin(�z)

�
, (7)

where 
 = �–�2+�1
2 is the azimuthal angle that divides region

0 into two symmetric subregions. The necessary boundary
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Figure 4. The contour plot of the quantized dispersion
equation (one if it is fulfilled, zero if not) with respect to the
positive parameter � and the permittivity of the secondary
wedge �r2 for: (a) �2 = 45ı and (b) �2 = 60ı. Plot parameters:
�r1 = –0.5, �1 = 45ı.

conditions along the surfaces � = �1, (� – �2) are shown
below:

ˆ0|�=�1 = ˆ1|�=�1 , ˆ0|�=�–�2 = ˆ2|�=�–�2 , (8)

@ˆ0

@�

ˇ̌̌
ˇ
�=�1

= �r1
@ˆ1

@�

ˇ̌̌
ˇ
�=�1

,
@ˆ0

@�

ˇ̌̌
ˇ
�=�–�2

= �r2
@ˆ2

@�

ˇ̌̌
ˇ
�=�–�2

.

(9)

After imposing them on the formulas (5)–(7), one obtains
the following equation:

tanh(��1) = –�r1
�r2 tanh(�(� – �1 – �2)) + tanh(�(�2))
�r2 + tanh(�(� – �1 – �2)) tanh(�(�2))

. (10)

The solutions of this equation with respect to � > 0, corre-
sponds to the permissible field distributions into the entire
configuration. Therefore, this is the dispersion equation and
should be verified in order for the electric field to exist.

[12] After employing well-known properties of the hyper-
bolic functions, the dispersion relation is written as:

L(�) = –Arctanh
�

tanh(��1)
�r1

�
–Arctanh

�
tanh(��2)

�r2

�
= �(�–�1–�2).

(11)

It should be remarked that for �r1, �r2 ! 1, the solution to
that equation is � = 0 which is trivial and corresponds to
null (zero) fields. Such a result is compatible with the stan-
dard Schwarz-Christoffel solutions [Smythe, 1950] of a pair
of a ground wedges touching each other. The same expres-
sion (11) is obtained if one changes the parameter �1 by �2
and vice versa, a feature that is justified by the symmetry
of the structure. The right-hand side (RHS) of the equation
above is an upward sloping straight line with always positive
sign since �1 + �2 < � from the definition of the config-
uration. Note that the left-hand side (LHS) L(�) tends to
complex infinity for –1 < �r1 < 0, if we take for granted that
the second sharp wedge is filled with an ordinary dielectric
material �r2 > 1. Under these conditions, the function L(�)
starts from zero and takes unboundedly large positive values
at this � > 0 dictated by the equation: tanh(��1) = –�r1. For
� > – Arctanh(�r1)

�1
, the LHS becomes complex, and thus, no

solution for (11) is detected. The derivative of the LHS is
given by:

L0(�) = –
�r1�1

1 +
�
�2

r1 – 1
�

cosh2(��1)
–

�r2�2

1 +
�
�2

r2 – 1
�

cosh2(��2)
. (12)

It should be stressed that for the all the considered cases,
the function L(�) and its derivative L0(�) preserve their
(positive) sign for every � > 0.

[13] A typical variation of the quantities appeared in the
field existence condition is shown in Figure 2. The red curve
corresponds to the function L(�), the blue curve concerns the
linear RHS �(�–�1–�2), and the green curve is the tangent of
L(�) at � = 0. It is apparent that a positive solution � = �o > 0
(apart from the trivial � = 0 which leads to all-zero fields)
for (11), is feasible when the (positive) derivative of the LHS
L(�) at � = 0 is smaller than the (always positive) slope of
the linear RHS (� – �1 – �2). In other words, the necessary
inequality constraint is written as follows:

0 < L0(0) < � –�1 –�2 ) �1 +�2 <
�

1 –
1

�r1

	
�1 +

�
1 –

1
�r2

	
�2 <� .

(13)
Note that the analysis above is valid regardless of the
z-dependence of (5)–(7). Our choice to confine the permittiv-
ity of the primary component within the range �r1 2 (–1, 0)
is compatible with the results for the azimuthally odd modes
of a single wedge [Wallen et al., 2008].

3.3. Quality Factor
[14] Assume that the case we analyze requires a certain

positive solution � = �o. Let us compute the electric field
into region 1 from the well-known formula: E1(�, �, z) =
–rˆ1(�, �, z). The components in cylindrical coordinates
are given by:

E(�o)
1� (�, �, z) = –f0�(�)B1 sinh(�o�)

�
cos(�z)
sin(�z)

�
, (14)

E(�o)
1�

(�, �, z) = –�o
f�(�)

�
B1 cosh(�o�)

�
cos(�z)
sin(�z)

�
, (15)

E(�o)
1z (�, �, z) = –�f�(�)B1 sinh(�o�)

�
– sin(�z)
cos(�z)

�
, (16)

where f�(�) = Kj�o (��) in this case. Due to the lack of
sources in the regarded problem, we determine the eigenso-
lutions of it; on the contrary, a unique solution can be derived
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Figure 5. The quality factor QF as function of the angle �2 for several permittivities �r2 with use of the
exact circular cylindrical solution for: (a) � = 0.1 rad/m, (b) � = 0.4 rad/m, (c) � = 0.7 rad/m, and (d)
� = 1 rad/m. Plot parameters: �r1 = –0.5, �1 = 45ı, R = 1 m, h = 1 m, even case.

only under a specific, well-defined excitation. In particular,
we find the family of solutions for the electrostatic poten-
tial and the electric field that formulate physically consistent
concepts. This uncertainty is expressed through the arbitrary
real (proportional) constant B1 appeared above when find-
ing the electric field for the first sharp wedge. We assume
that this parameter takes a unitary value B1 = 1, and thus,
the effect of the surrounding configuration (second wedge,
vacuum background, PEC plane) is solely expressed through
the solution � = �o of (11).

[15] To estimate the influence of the second component on
the field concentration of the first wedge, one can define the
following power ratio developed into the three-dimensional
sector: {0 < � < R, 0 < � < �1, –h < z < h}.

QF =

R h
–h

R �1
0

R R
0

h
|E(�o)

1� |2 + |E(�o)
1�

|2 + |E(�o)
1z |2

i
�d�d�dzR h

–h
R �1

0
R R

0

h
|E(�0

o)
1� |2 + |E(�0

o)
1� |2 + |E(�0

o)
1z |2

i
�d�d�dz

, (17)

where �0

o is the solution to (11) for �r2 = 1 and �2 = 0 which
corresponds to the case of an absent auxiliary wedge. Note
that the dependence of the field components on the obser-
vation point (�, �, z) has been dropped for brevity. In other
words, this quality factor indicator QF shows how much the
electric field close to the origin has been amplified, in the
presence of the secondary sharp wedge component. If it is
larger than unity (QF > 1), then the design structure serves

well its electrostatic field enhancement purpose. It should be
mentioned that the point � = 0 is excluded from the inte-
grations since the integrand functions exhibit nonintegrable
singularity: |E1�|2, |E1� |2 = O

�
1/�2

�
, � ! 0. In particular,

we replace the lower limit with a small positive quantity
r ! 0; however, it does not play a significant role since the
same singularity is dropped from both the numerator and the
denominator of (17).

4. “Quasi–3D” Approximate Solutions
4.1. Circular Cylindrical Coordinates

[16] Based on the complete solution for the 3-D struc-
ture of Figure 1 described above, it would be interesting
to examine its behavior when the variation along z axis
is not significant. In other words, we are investigating a
“quasi-3D” situation which corresponds to the case that the
parameter � is small: � ! 0. The �-dependent solution for a
pure 2-D case (ˆ(�, �) = f�(�)f�(�)) is given by Vinogradov
and Liu [2001]:

f�(�) = A� cos(� log �) + B� sin(� log �), (18)

while f�(�) possesses the same expression (3) as in the 3-D
case. The corresponding radial formula in the 3-D problem
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Figure 6. The quality factor QF as function of the out-of-
plane wave number � for: (a) several angles �2 (�r2 = 4)
and (b) several permittivities �r2 (�2 = 36ı). Plot parameters:
�r1 = –0.5, �1 = 45ı, R = 1 m, h = 1 m, even case.

equals to Kj�(��) and takes the following limiting form for
small arguments (based on Abramowitz and Stegun [1970]):

f�(�) Š Kj�(��) Š <[�(j�)] cos
h
� log


��

2

�i

+ =[�(j�)] sin
h
� log


��

2

�i
, � ! 0. (19)

If we keep the same z-dependence fz(z) dictated by (4), then
the Laplacian of function of the electromagnetic potential
ˆ(�, �, z) = f�(�)f�(�)fz(z) is given by:

r2ˆ(�, �, z) Š –�2f�(�)
�
A� cosh(��) + B� sinh(��)


� [Az cos(�z) + Bz sin(�z)] , � ! 0. (20)

It is obvious that for the “quasi-3D” case (0 ¤ � ! 0), the
aforementioned expression ˆ(�, �, z) approximately obeys
the Laplace differential equation. It should be stressed that
the only difference with the set of solutions (2)–(4) is
in the radial function f�(�) since the other dependencies
are the same as in the 3-D case:

˚
f�(�) = A� cosh(��)+

B� sinh(��), fz(z) = Az cos(�z) + Bz sin(�z)
�
. Accordingly,

the dispersion equation (11) is also valid for the considered

case because the �-dependent function f�(�) is common for
all the considered areas and is factored out. Therefore, the
formulas (14)–(16) determining the electric field into region
1 are correct (with f�(�) as given by (19)) for the investigated
cylindrical “quasi-3D” approach; the same happens for the
definition (17) of the quality factor QF .

4.2. Elliptic Cylindrical Coordinates
[17] Under the same assumption of slowly varying fields

with respect to z coordinate, one can solve another inter-
esting configuration with slightly different characteristics.
In particular, we consider the elliptic cylindrical coordinate
system (u, � , z) with focal distance a [Hassani, 2000] and
the physical configuration depicted in Figure 3. It is sim-
ilar to that of Figure 1 with the difference that the two
dielectric regions (1 and 2) have hyperbolic and not pla-
nar boundaries; accordingly, a small gap exists in-between
the two wedge noses. The angular values defining the two
boundaries are the same as in the cylindrical problem: � = �1
and � = � – �2. Note that the elliptic cylindrical coordi-
nates (u, � , z) are related to the Cartesian ones (x, y, z) by the
following:

x = a cosh u cos � , (21)

y = a sinh u sin � , (22)

where u � 0 and � 2 [0, 2�). The unknown potential
function is again defined in separable form: ˆ(u, � , z) =
fu(u)f�(�)fz(z). In order to find an approximate solution to
this new boundary value problem, we consider points rela-
tively far from the origin (u >> 1) where the two coordinate
systems (u, � , z) and (�, �, z) are identical. In particular,

x Š a
2

eu cos � , u >> 1, (23)

y Š a
2

eu sin � , u >> 1, (24)

which means that: tan � = y
x Š tan � ) � Š � , u >> 1.

That is why, the hyperbolic angles of the dielectric volumes
(� = �1, � – �2) were kept equal to those in the circular cylin-
drical case. As far as the connection between the parameters
u and � is concerned, we have the relations:

� Š a
2

eu , u Š log
�

2�

a

	
, u >> 1, (25)

since �2 = x2 + y2 Š a2

4 e2u , u >> 1. By substituting (25)
to (19), the following expression for fu(u) is obtained:

fu(u) Š <[�(j�)] cos
�
�u – � log

�
4

�a

	�

+ =[�(j�)] sin
�
�u – � log

�
4

�a

	�
, � ! 0. (26)

[18] Given the fact the u-dependent solution set of the
considered 2-D problem is the following: {cos(�u), sin(�u)},
the aforementioned expression is acceptable in terms of the
satisfaction of the Laplace differential equation in the 2-D
elliptic cylindrical coordinate system. Therefore, we have
determined the correct formula which is satisfactorily accu-
rate not only for u >> 1 but for every u > 0. By retaining
the same �-dependence (f� (	) = f�(	)) and z-dependent
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Figure 7. The modified quality factor QF * as function of
the out-of-plane wave number � for: (a) several angles �2
(�r2 = 4) and (b) several permittivities �r2 (�2 = 36ı). Plot
parameters: �r1 = –0.5, �1 = 45ı, R = 1 m, h = 1 m,
even case.

functions as in (3) and (4), respectively, the Laplacian
of function of the electrostatic potential ˆ(u, � , z) is
given by:

r2ˆ(u, � , z) Š –�2fu(u) [A� cosh(��) + B� sinh(��)]

� [Az cos(�z) + Bz sin(�z)] , � ! 0. (27)

Again, the function ˆ(u, � , z) satisfies the Laplace equation
for � ! 0. The three components of the electric field
into region 1 are found by proper application of the gra-
dient operator [Morse and Feshbach, 1953], on the elec-
trostatic potential function (E1(u, � , z) = –rˆ1(u, � , z))
as follows:

E(�o )
1u (u, � , z) = –

f0u(u)

a
p

sinh2 u + sin2 �
B1 sinh(�o�)

�
cos(�z)
sin(�z)

�
,

(28)

E(�o)
1�

(u, � , z) = –�o
fu(u)

a
p

sinh2 u + sin2 �
B1 cosh(�o�)

�
cos(�z)
sin(�z)

�
,

(29)

E(�o)
1z (u, � , z) = –�fu(u)B1 sinh(�o�)

�
– sin(�z)
cos(�z)

�
. (30)

It is noteworthy that the dispersion relation (11), possess-
ing the solution � = �o > 0, covers also the analyzed
hyperbolic wedge configuration. This peculiar feature is
attributed to the fact that the solution set with respect to
the circular cylindrical variable �: {cosh(��), sinh(��)},
is identical to that of the elliptic cylindrical variable � :
{cosh(��), sinh(��)}. In this sense, the quality factor QF is
expressed in the adopted coordinate system as follows:

QF =

R h
–h

R �1
0

R log



2R
a

�
0

h
|E(�o)

1u |2 + |E(�o)
1�

|2 + |E(�o)
1z |2

i�
sinh2 u + sin2 �

�
dud�dz

R h
–h

R �1
0

R log



2R
a

�
0

h
|E(�0

o)
1u |2 + |E(�0

o)
1�

|2 + |E(�0

o)
1z |2

i�
sinh2 u + sin2 �

�
dud�dz

.

(31)

Note that the differential volume element of the elliptic
cylindrical coordinates (u, � , z) with focal distance a, is
defined as: dV = a2

�
sinh2 u + sin2 �

�
dud�dz. The integral

with respect to u has an upper limit equal to log
� 2R

a

�
, in order

to consider an approximately equal area as this in (17), with
use of (25). The point (u, �) = (0, 0) is not singular since the
square root quantities at the denominators are neutralized by
the identical ones incorporated in dV.

5. Numerical Results
5.1. Parameter Ranges

[19] As remarked previously, the primary wedge is filled
with metamaterials of negative permittivities within the
limits: –1 < �r1 < 0; therefore, we will keep fix the dielectric
constant equal to the average value: �r1 = –0.5, to understand
better the influence of the secondary structure. This auxiliary
wedge is made of a dielectric with dielectric constant: 1 <
�r2 < 5. The latter choice of the common dielectric mate-
rial for the secondary wedge is made based on our intention
to employ an ordinary substance to construct the auxiliary
component instead of materials with special or exotic prop-
erties. As far as the angular extents are concerned, they are
obeying the inequality: 0 < �1, �2 < �/2; while in most
examples, we take �1 = �/4 for the reason stated above. It
is notable that negative permittivities �r2 for the secondary
wedge do not anyway lead to supported separable modes by
the background structure with �r1 = –0.5 and �1 = �/4 since
a positive � satisfying the dispersion equation (10) does not
exist in most cases. In Figure 4, we show the contour plots of
a quantity indicating those combinations of (�, �r2) leading to
a supported mode-solution to (10) under the separation-of-
variables assumption. In particular, the represented quantity
is defined as follows:

S(�, �r2) =

(
1 , |L(�) – �(� – �1 – �2)| � 0.02
0 , |L(�) – �(� – �1 – �2)| > 0.02

. (32)

Therefore, the white regions (value 1) in the depicted
contour plots, correspond to permissible combinations of
(�, �r2); on the contrary, the dark regions (value 0) indicate
those cases that no mode is supported in the sense stated
above. By inspection of the graphs in Figure 4a (�2 = �/4)
and in Figure 4b (�2 = �/3), it is directly derived that no
� > 0 constitutes a solution for (10) when �r2 < 0.

[20] The out-of-plane wave number � should be real
(� 2 R), but we confine ourselves to positive values
0.1 rad/m< � <1 rad/m due to symmetry with respect to z
axis. Naturally, in the “quasi-3D” cases, we select an even
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Figure 8. The magnitude of the electric field |E| represented in contour plot with respect to the
geometrical coordinates with use of: (a) the approximate circular cylindrical solution (�r2 = 1), (b) the
approximate circular cylindrical solution (�r2 = 5), (c) the approximate elliptic cylindrical solution
(�r2 = 1, a = 0.15 m), and (d) the approximate elliptic cylindrical solution (�r2 = 5, a = 0.15 m). Plot
parameters: � = 0.1 rad/m, �1 = 45ı, �2 = 30ı, z = 0 m, even case.

smaller � ! 0, more specifically: 0 < � < 0.1. In the
case of the hyperbolic wedges, the distance a varies from
infinitesimal a = 0.0001 m to a substantial a = 1 m, which is
unnatural but necessary for identifying the effect of the edge
rounding. The reference radius R which is used in evaluat-
ing the quality factor QF is chosen small too, in order to
observe the behavior of the field in the vicinity of the (sharp
or rounded) edge. The axial length 2h can be selected arbi-
trarily since it does not affect significantly the variation of
our sole output quantity which is the quality factor QF . It
has been also checked that the choice of the z-dependence
(even waves with cos(�z) or odd waves with sin(�z)) plays
no role in the value of QF due to the relative nature of the
evaluated quantity. Needless to say that for all the consid-
ered cases, the dispersion equation (10) in the presence and
in the absence of the auxiliary wedge possesses acceptable
solutions �o > 0 and �0

o > 0 (in separable form), respectively.
[21] A sensible criticism for the definition of QF would

be based on the fact that the field quantities are not the
unique solution to a given boundary value problem under
a certain excitation but simply modal forms supported by
the structure. Our response on this remark is that the back-
ground field or the source could be chosen suitably to excite
a specific mode. In other words, if a large field enhancement
is observed for a specific combination of input parame-
ters, then similarly increased power concentration would be
noticed when comparing actual field quantities for a prop-
erly selected excitation. This argument is further reinforced

by the feature that, in our configuration, one single mode
(� = �o, �0

o) is supported by the given structure. Therefore,
part of the background field power (excitation field) would
inevitably excite the single mode both in the case of an
absent (� = �0

o) and a present (� = �o) secondary wedge.
To put it alternatively, the single mode supported by the
structure will be activated in the same way regardless of the
presence of the auxiliary component. Note that the permit-
tivity in the corresponding region 1, �r1, is the same in the
two cases.

[22] To elaborate further this point, we can consider a
unitary homogeneous background field normal to the PEC
plane written as: Eb = y (in volt/meter). A modified quality
factor QF * could be defined as the ratio of the projection of
the total field E1 (into the primary wedge) on the excitation
field Eb in the presence of the secondary wedge, over the
respective quantity in the absence of the secondary wedge.
It is written in mathematical form as follows:

QF* =
”

|E(�o )
1 � Eb|dV”

|E(�0

o )
1 � Eb|dV

. (33)

In the following, it is shown that the alternative quality factor
QF* exhibits similar variations with the one based exclu-
sively on modal solutions QF , and thus, the latter quantity
could be used as a field enhancement indicator even in the
presence of external excitation.
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Figure 9. The quality factor QF as function of: (a) the
secondary angle �2 and (b) the angular extent �2, for various
distances a. Plot parameters: � = 0.1 rad/m, �r1 = –0.5,
�r2 = 2.5, R = 0.5 m, h = 1 m, even case.

5.2. Exact Formulas (� > 0)
[23] In Figure 5a, we show the quality factor QF as

function of the angular extent of the second wedge �2 for var-
ious relative permittivities �r2, while the out-of-plane wave
number � is kept small (� = 0.1 rad/m). The behavior of
all the curves is oscillatory, and the dependence from �2 is
stronger for electrically denser materials of the secondary
component. The improvement in the field concentration
across the primary wedge is not very significant even though
it surpasses 50% in some cases. However, there are many
zones where deteriorations (QF < 1) in the measured quan-
tity are recorded. In Figures 5b and 5c, where � is slightly
increased, the device performance is higher despite the fact
that the waveform of the curves is similar. Finally, QF pos-
sesses much more substantial magnitudes when � = 1 rad/m
as happening in Figure 5b.

[24] In Figure 6a, the quality factor QF is shown as
function of the out-of-plane wave number � for various
angular extents �2. One can clearly notice the upward sloping
behavior curves at least when � belongs to the considered
interval (0, 1). In case �2 takes the two extreme values (�2 =
�/6, �/3), the quality performance experiences a drop for
small � which could be attributed to the asymmetry of the

structure. In Figure 6b, where multiple �r2 are regarded, we
can notice again the beneficial influence of the out-of-plane
wave number � on the power concentration. It is remarkable
that for �r2 = 1.5, 3.5, the improvement in the developed field
along the metamaterial primary wedge is the same regard-
less of �. The best choice for the dielectric permittivity is
�r2 = 4.5; on the contrary, the performance of the auxiliary
secondary structure is rather poor when �r2 = 2.5.

[25] In Figure 7, we use the same input parameters as
in Figure 6, but the represented quantity is now the mod-
ified quality factor QF * as defined in (33). By comparing
Figure 7a with Figure 6a and Figure 7b with Figure 6b, one
can clearly notice the similarity of the waveforms, even if the
magnitude levels are different. Therefore, the ratio QF is not
deprived of physical meaning, since almost the same varia-
tions are recorded when a background field Eb is assumed as
taken into account in QF *.

5.3. Approximate Formulas (� ! 0)
[26] In Figure 8, we show the contour plots of the

electric field magnitude |E| =
p

|E�|2 + |E� |2 + |Ez|2 =p
|Eu|2 + |E� |2 + |Ez|2 in decibel with respect to the geomet-

rical coordinates into both the wedges for various cases.
In Figures 8a and 8b, one can compare the electric power
distribution in the absence and in the presence of a spe-
cific secondary volume. The assumption for slowly varying
fields with respect to z is adopted, while the boundaries are
marked with black color. It is obvious that the field into
the auxiliary wedge is negligible compared to the vacuum
case; in other words, the second volume “forces” the elec-
tric power to get concentrated externally to it. Note that
possible discontinuities along the boundaries are anticipated
since the represented quantity contains the discontinuous
normal component. In Figures 8c and 8d, the same case is
considered but for the hyperbolic-type configuration. The
improvement in the intensity is more remarkable, again due
to the very low field into the secondary component.

[27] In Figure 9a, the quality factor QF is shown as func-
tion of the angle �2 for various elliptic coordinate systems
with different focal distances a. It should be noted that an
increasing �2 contributes positively to the device effective-
ness since the cross section of the auxiliary wedge, and
accordingly, the low-field region of Figures 8b and 8d gets
larger. Naturally, the curve corresponding to elliptic coor-
dinates with small a = 0.005 m is close to that of the
circular cylindrical configuration, while the optimal result is
obtained for a = 0.2 m. With similar focal distances, one
achieves better results than in the circular cylindrical case,
a fact that is demonstrated by comparing Figure 8a with
Figure 8b and Figure 9a with Figure 9b. In Figure 9b, where
the independent variable is the secondary permittivity �r2,
the curves are again increasing but with a slower pace than
that of Figure 9). However, the choice of the focal distance
affects similarly the structure effectiveness (QF) in both
the figures.

6. Conclusions
[28] Wedges with sharp or rounded edges are exten-

sively utilized in modeling electromagnetic devices such
as nanotips, probes, microscripts, and memory scanners.
The effective operation of all these devices requires, for
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different reasons each, an increased field concentration in
the vicinity of the wedge’s corner. For example, improved
field intensity externally to the nanotip could be beneficial
in electron microscope usage, while internal field enhance-
ment is required in chemical experiments. In other words,
whether we need high power concentrations into or outside
the wedge is application-dependent; however, field enhance-
ment close to the corner is always positively evaluated. In
this work, we solve the electrostatic problem of a metama-
terial wedge in the presence of a secondary dielectric wedge
posed against the first one by forming a “bowtie” structure.
Both circular and elliptic coordinate system configurations
are introduced, while approximate expressions for slowly
axially varying fields are obtained. A quality factor express-
ing the power enhancement has been defined and has been
found to possess substantial magnitudes for certain angu-
lar extents and permittivities of the dielectric wedge. More
specifically, it is found out that there is a clear increasing
trend of this quality factor with the angle and the permittivity
of the secondary wedge when the fields are weakly depen-
dent on the axial coordinate. Furthermore, rapid oscillations
are remarked when the geometrical variation along the axis
gets stronger.

[29] An interesting expansion of the present study would
be to insert multiple wedges around the primary metama-
terial structure in order to achieve higher developed power
into it. In this way, due to more degrees of freedom, a more
realistic selection of parameters would be possible in order
to render the device practically applicable. Furthermore,
it would be intriguing to test the same configuration in
the electrodynamic regime and observe if the beneficial
amplifying properties hold.

[30] Acknowledgments. Dr. Valagiannopoulos acknowledges the
Academy of Finland for postdoctoral project funding.
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