660 research outputs found

    The use of a non-absorbable membrane as an occlusive barrier for alveolar ridge preservation: A one year follow-up prospective cohort study

    Get PDF
    The aims of this study were to obtain preliminary data and test the clinical efficacy of a novel nonporous dense-polytetrafluoroethylene (d-PTFE) membrane (permamem®, botiss) in alveolar ridge preservation (ARP) procedures with a flapless approach. A traumatic extraction was performed in the premolar maxillary area, and a d-PTFE membrane was used to seal the alveolar cavity: no biomaterial was used to graft the socket and the membrane was left intentionally exposed and stabilized with sutures. The membrane was removed after four weeks and dental implants were placed four months after the procedure. The primary outcome variables were defined as the dimensional changes in the ridge width and height after four months. A total of 15 patients were enrolled in this study. The mean width of the alveolar cavity was 8.9 ± 1.1 mm immediately after tooth extraction, while four months later a mean reduction of 1.75 mm was experienced. A mean vertical reduction of 0.9 ± 0.42 mm on the buccal aspect and 0.6 ± 0.23 mm on the palatal aspect were recorded at implant placement. Within the limitations of this study, the d-PTFE membrane proved to be effective in alveolar ridge preservation, with the outcomes of the regeneration not affected by the complete exposure of this biomaterial

    Structural connectivity and functional properties of the macaque superior parietal lobule

    Get PDF
    Despite the consolidated belief that the macaque superior parietal lobule (SPL) is entirely occupied by Brodmann’s area 5, recent data show that macaque SPL also hosts a large cortical region with structural and functional features similar to that of Brodmann’s area 7. According to these data, the anterior part of SPL is occupied by a somatosensory-dominated cortical region that hosts three architectural and functional distinct regions (PE, PEci, PEip) and the caudal half of SPL by a bimodal somato-visual region that hosts four areas: PEc, MIP, PGm, V6A. To date, the most studied areas of SPL are PE, PEc, and V6A. PE is essentially a high-order somatomotor area, while PEc and V6A are bimodal somatomotor–visuomotor areas, the former with predominant somatosensory input and the latter with predominant visual input. The functional properties of these areas and their anatomical connectivity strongly suggest their involvement in the control of limb movements. PE is suggested to be involved in the preparation/execution of limb movements, in particular, the movements of the upper limb; PEc in the control of movements of both upper and lower limbs, as well as in their interaction with the visual environment; V6A in the control of reach-to-grasp movements performed with the upper limb. In humans, SPL is traditionally considered to have a different organization with respect to macaques. Here, we review several lines of evidence suggesting that this is not the case, showing a similar structure for human and non-human primate SPLs

    PIP-II SSR2 Cavities Fabrication and Processing Experience

    Full text link
    The Proton Improvement Plan-II (PIP-II [1]) linac will include 35 Single Spoke Resonators type 2 (SSR2). A preproduction SSR2 cryomodule will contain 5 jacketed cavities. Several units are already manufactured and prepared for cold testing. In this work, data collected from the fabrication, processing and preparation of the cavities will be presented and the improvements implemented after the completion of the first unit will be highlighted

    Fractional differentiability for solutions of nonlinear elliptic equations

    Full text link
    We study nonlinear elliptic equations in divergence form divA(x,Du)=divG.{\operatorname{div}}{\mathcal A}(x,Du)={\operatorname{div}}G. When A{\mathcal A} has linear growth in DuDu, and assuming that xA(x,ξ)x\mapsto{\mathcal A}(x,\xi) enjoys Bnα,qαB^\alpha_{\frac{n}\alpha, q} smoothness, local well-posedness is found in Bp,qαB^\alpha_{p,q} for certain values of p[2,nα)p\in[2,\frac{n}{\alpha}) and q[1,]q\in[1,\infty]. In the particular case A(x,ξ)=A(x)ξ{\mathcal A}(x,\xi)=A(x)\xi, G=0G=0 and ABnα,qαA\in B^\alpha_{\frac{n}\alpha,q}, 1q1\leq q\leq\infty, we obtain DuBp,qαDu\in B^\alpha_{p,q} for each p<nαp<\frac{n}\alpha. Our main tool in the proof is a more general result, that holds also if A{\mathcal A} has growth s1s-1 in DuDu, 2sn2\leq s\leq n, and asserts local well-posedness in LqL^q for each q>sq>s, provided that xA(x,ξ)x\mapsto{\mathcal A}(x,\xi) satisfies a locally uniform VMOVMO condition

    A dissipative environment may improve the quantum annealing performances of the ferromagnetic p-spin model

    Full text link
    We investigate the quantum annealing of the ferromagnetic p p -spin model in a dissipative environment (p=5 p = 5 and p=7 p = 7 ). This model, in the large p p limit, codifies the Grover's algorithm for searching in an unsorted database. The dissipative environment is described by a phonon bath in thermal equilibrium at finite temperature. The dynamics is studied in the framework of a Lindblad master equation for the reduced density matrix describing only the spins. Exploiting the symmetries of our model Hamiltonian, we can describe many spins and extrapolate expected trends for large N N , and p p . While at weak system bath coupling the dissipative environment has detrimental effects on the annealing results, we show that in the intermediate coupling regime, the phonon bath seems to speed up the annealing at low temperatures. This improvement in the performance is likely not due to thermal fluctuation but rather arises from a correlated spin-bath state and persists even at zero temperature. This result may pave the way to a new scenario in which, by appropriately engineering the system-bath coupling, one may optimize quantum annealing performances below either the purely quantum or classical limit.Comment: 9 Pag, 5 Fig, Submitte

    Lipschitz regularity for degenerate elliptic integrals with p, q-growth

    Get PDF
    We establish the local Lipschitz continuity and the higher differentiability of vector-valued local minimizers of a class of energy integrals of the Calculus of Variations. The main novelty is that we deal with possibly degenerate energy densities with respect to the x -variable

    Characterisation of wine yeasts isolated at different temperatures using the enrichment technique

    Get PDF
    Research NoteSaccharomyces cerevisiae strains isolated from fermenting grape must incubated at extreme fermentation temperatures (40 and 5 degrees C) were oenologically characterised. These cultures compared with S. cerevisiae wine strains, show a wider optimum temperature for growth and can ferment vigorously in a wider temperature range (27 to 35 degrees C)

    A Traffic Merging and Generation Framework for Realistic Synthesis of Network Traffic

    Get PDF
    The Internet is steadily growing and is of increasing importance for our economy and society. Due to this increased importance it is also in the focus of attacks, e.g. distributed denial of service (DDoS) attacks. As attackers dynamically change their attack behaviour, novel detection approaches that are able to automatically adjust to these dynamic attacks are needed. To train and test such network anomaly detection systems, it is necessary to provide realistic data. As of today, this area of research suffers from the lack of publicly available datasets that can be used to train and test anomaly detection systems and are exchangeable to allow reproducible research. Therefore, we propose a novel framework that enables researchers and developers to generate customizable synthetic datasets. It not only allows to generate fully-synthetic network traffic, but also to generate semi-synthetic network traffic by merging of multiple network captures from reallive environments. Further, it allows the mapping of IP addresses as well as the modi﬿cation of other header ﬿elds, if desired. This enables researchers and developers to exchange network traces from sensitive environments without revealing any sensitive end-user related information, while perceiving the relevant characteristics of the network(s) and attack(s). In the following, we provide a description of, the problem, our concept and the features of our solution, the architecture and functional model and ﬿nally provide a short summary together with an outlook for future work
    corecore