414 research outputs found

    Desecrating Celebrity. Italian Cases in Cinema, TV Series, Music and Social Media

    Get PDF
    The theme of “celebrity”, its cultural origins, its social meaning and media propagation, and its effects on the audience, has interested scholars of various disciplines for a long time. Just recently, however, an academic research area called “Celebrity Studies” has been established, with a consolidated tradition mostly in the Anglo-Saxon countries.The article discussed the Italian contribution to this extensive area of investigation started to appear in the second half of the last centur

    Growth Dynamics of Ultrathin Films of Benzo[1,2-b:4,5-b']dithiophene Derivatives on Au(111): A Photoelectron Spectroscopy Investigation

    Get PDF
    : Ultrathin films of a stereoisomeric mixture of benzo[1,2-b:4,5-b']dithiophene derivatives were grown by thermal evaporation in vacuum on Au(111), and they were studied in situ by photoelectron spectroscopy. X-ray photons from a non-monochromatic Mg Kα conventional X-ray source and UV photons from a He I discharge lamp equipped with a linear polarizer were used. He I photoemission results were compared with density functional theory (DFT) calculations: density of states (DOS) and 3D molecular orbital density distribution. Au 4f, C 1s, O 1s, and S 2p core-level components suggest a surface rearrangement as a function of film nominal thickness, with the variation of the molecular orientation, from flat-laying at the initial deposition to tilted toward the surface normal at coverages exceeding 2 nm. Eventually, the DFT results were exploited in assigning of the valence band experimental structures. Moreover, polarization-dependent photoemission confirmed the tilted arrangement of the molecules, starting at 2 nm. A variation of the work function of 1.4 eV with respect to the clean substrate was measured, together with a valence band offset of 1.3 eV between the organic layer and gold

    Moderate Neonatal Stress Decreases Within-Group Variation in Behavioral, Immune and HPA Responses in Adult Mice

    Get PDF
    BACKGROUND: The significance of behavioral neuroscience and the validity of its animal models of human pathology largely depend on the possibility to replicate a given finding across different laboratories. Under the present test and housing conditions, this axiom fails to resist the challenge of experimental validation. When several mouse strains are tested on highly standardized behavioral test batteries in different laboratories, significant strain x lab interactions are often detected. This limitation, predominantly due to elevated within-group variability observed in control subjects, increases the number of animals needed to address fine experimental questions. Laboratory rodents display abnormal stress and fear reactions to experimental testing, which might depend on the discrepancy between the stability of the neonatal environment and the challenging nature of the adult test and housing conditions. METHODOLOGY/PRINCIPAL FINDINGS: Stimulating neonatal environments (e.g. brief maternal separations, increased foraging demands or maternal corticosterone supplementation) reduce stress and fear responses in adulthood. Here we tested whether reduced fearfulness associated with experimental testing would also reduce inter-individual variation. In line with our predictions, we show that a moderate elevation in neonatal corticosterone through maternal milk significantly reduces fear responses and inter-individual variability (average 44%) in adult mouse offspring. CONCLUSIONS/SIGNIFICANCE: We observed reduced variation in pain perception, novelty preference, hormonal stress response and resistance to pathogen infection. This suggests that the results of this study may apply to a relatively broad spectrum of neuro-behavioral domains. Present findings encourage a reconsideration of the basic principles of neonatal housing systems to improve the validity of experimental models and reduce the number of animals used

    Emerging Topics in the Research on Digital Audiences and Participation

    Get PDF
    This article discusses the many implications of participation in a cross-media scenario where actions and behaviours of digital audiences are reshaping some key processes in journalism, politics and the media industry. The development of this research agenda is based on an analysis of a state of the art of the latest researches in the ield of communication and media studies, as identiied in 26 individual reports, written by members of Working Group 2 of the Cost Action Transforming Audiences, Transforming Societies (TATS). This article frames these emerging research topics as tensions, arguing that the idea of tension is the best metaphor to identify and analyse the challenges of the 21st century media landscapeCOST Action ISO906 Transforming Audiences Transforming SocietiesCiencias de la Comunicació

    A Sterescopic System to Measure Water Waves in Laboratories

    Get PDF
    A new system for estimating the synthetic parameters of sea states during physical investigations has been implemented. The technique proposed herein is based on stereographic analysis of digital images acquired with optical sensors. A series of ad hoc floating markers has been made and properly moored to the bottom of a large wave tank to estimate the synthetic parameters of generated waves. The implemented acquisition system and the proposed algorithm provide automatic recognition of all markers by a pair of optical sensors that synchronously captures their instantaneous location and tracks their movements over time. After transformation from the image to the real-world coordinates, water surface elevation time series have been obtained. Several experimental tests have been carried out to assess the feasibility and reliability of the proposed approach. The estimated wave synthetic parameters have been then compared with those obtained by employing standard resistive probes. The deviation were found to be equal to ~6% for the significant wave height and 1% for peak, mean, and significant wave periods

    Process Scale-up for Production of Water-based Lithium-ion Pouch Cell

    Get PDF
    With the aim to promote technology transfer to small and medium-sized enterprises, a scale-up process to synthesize kilos of LiFePO4 is described. The process allowed the production of a material with a specific capacity of to 150 mAh g-1. Furthermore, a water-based manufacturing process to produce LiFePO4 electrodes was described. The experimental conditions were widely investigated to obtain homogeneous slurries and cracking free electrode coating, which resulted in flexible electrodes with good mechanical characteristics. These electrodes have been coupled with graphite base anodes to build 50 mAh Li-ion batteries and their electrochemical performance evaluated by galvanostatic cycles

    Enhanced ordering in length-polydisperse carbon nanotube solutions at high concentrations as revealed by small angle X-ray scattering

    Full text link
    Carbon nanotubes (CNTs) are stiff, all-carbon macromolecules with diameters as small as one nanometer and few microns long. Solutions of CNTs in chlorosulfonic acid (CSA) follow the phase behavior of rigid rod polymers interacting via a repulsive potential and display a liquid crystalline phase at sufficiently high concentration. Here, we show that small-angle X-ray scattering and polarized light microscopy data can be combined to characterize quantitatively the morphology of liquid crystalline phases formed in CNT solutions at concentrations from 3 to 6.5 % by volume. We find that upon increasing their concentration, CNTs self-assemble into a liquid crystalline phase with a pleated texture and with a large inter-particle spacing that could be indicative of a transition to higher-order liquid crystalline phases. We explain how thermal undulations of CNTs can enhance their electrostatic repulsion and increase their effective diameter by an order of magnitude. By calculating the critical concentration, where the mean amplitude of undulation of an unconstrained rod becomes comparable to the rod spacing, we find that thermal undulations start to affect steric forces at concentrations as low as the isotropic cloud point in CNT solutions

    Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    Get PDF
    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production

    Association between Cognitive Impairment and Malnutrition in Hemodialysis Patients: Two Sides of the Same Coin

    Get PDF
    Cognitive impairment and malnutrition are prevalent in patients on hemodialysis (HD), and they negatively affect the outcomes of HD patients. Evidence suggests that cognitive impairment and malnutrition may be associated, but clinical studies to assess this association in HD patients are lacking. The aim of this study was to evaluate the association between cognitive impairment evaluated by the Montreal Cognitive Assessment (MoCA) score and nutritional status evaluated by the malnutrition inflammation score (MIS) in HD patients. We enrolled 84 HD patients (44 males and 40 females; age: 75.8 years (63.5–82.7); HD vintage: 46.0 months (22.1–66.9)). The MISs identified 34 patients (40%) as malnourished; the MoCa scores identified 67 patients (80%) with mild cognitive impairment (MCI). Malnourished patients had a higher prevalence of MCI compared to well-nourished patients (85% vs. 70%; p = 0.014). MoCa score and MIS were negatively correlated (rho:−0.317; p < 0.01). Our data showed a high prevalence of MCI and malnutrition in HD patients. Low MoCA scores characterized patients with high MISs, and malnutrition was a risk factor for MCI. In conclusion, it is plausible that MCI and malnutrition are linked by common sociodemographic, clinical, and biochemical risk factors rather than by a pathophysiological mechanism

    X‐ray microscopy. A non‐destructive multi‐scale imaging to study the inner workings of batteries

    Get PDF
    X-ray microscopy (XRM) is a non-destructive characterization technique that provides quantitative information regarding the morphology/composition of the specimen and allows to perform multiscale and multimodal 2D/3D experiments exploiting the radiation-matter interactions. XRM is particularly suitable to afford in situ images of inner parts of a battery and for the early diagnosis of its degradation in a non-invasive way. Since traditional characterization techniques (SEM, AFM, XRD) often require the removal of a component from the encapsulated device that may lead to non-desired contamination of the sample, the non-destructive multi-scale potential of XRM represents an important improvement to batteries investigation. In this work, we present the advanced technical features that characterize a sub-micron X-ray microscopy system, its use for the investigation of hidden and internal structures of different types of batteries and to understand their behavior and evolution after many charge/discharge cycles
    corecore