239 research outputs found

    Investigation of initiation of gigantic jets connecting thunderclouds to the ionosphere

    Get PDF
    The initiation of giant electrical discharges called as "gigantic jets" connecting thunderclouds to the ionosphere is investigated by numerical simulation method in this paper. Using similarity relations, the triggering conditions of streamer formation in laboratory situations are extended to form a criterion of initiation of gigantic jets. The energy source causing a gigantic jet is considered due to the quasi-electrostatic field generated by thunderclouds. The electron dynamics from ionization threshold to streamer initiation are simulated by the Monte Carlo technique. It is found that gigantic jets are initiated at a height of ~18-24 km. This is in agreement with the observations. The method presented in this paper could be also applied to the analysis of the initiation of other discharges such as blue jets and red sprites.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Direct calorimetric measurements of isothermal entropy change on single crystal W-type hexaferrites at the spin reorientation transition

    Full text link
    We report on the magnetic field induced isothermal entropy change, \Delta s(Ha, T), of W-type ferrite with CoZn substitution. Entropy measurements are performed by direct calorimetry. Single crystals of the composition BaCo0.62_0.62Zn1.38_1.38Fe16_16O27_27, prepared by the flux method, are measured at different fixed temperatures under an applied field perpendicular and parallel to the c axis. At 296 K one deduces a value of K1_1 = 8.7 \times 10^{4} J m3^-3 for the first anisotropy constant, which is in good agreement with the literature. The spin reorientation transition temperature is estimated to take place between 200 and 220 K

    Doppler Ducting of Short-period Waves By Mid-Latitude Tidal Wind Structure

    Get PDF
    Multiwavelength airglow image data depicting a short-period (4.9 min) atmospheric gravity wave characterized by a sharp leading front have been analyzed together with synoptic meteor radar wind data recorded simultaneously from Bear Lake Observatory, Utah (41.6N, 111.6W). The wind data suggest the presence of a semidiurnal tide with horizontal winds peaking at around 60 m/s along the SSE direction of motion (170 from north) of this short-period wave. It was found that the gravity wave was most probably ducted because of the Doppler shift imposed by this wind structure. A marked 180 phase shift was observed between the near-infrared OH and the OI (557.7 nm) emissions. Numerical simulation results for similar ducted waves excited by idealized model sources suggest that the phase shift between the wave-modulated airglow intensities may be explained simply by chemical processes rather than by wave dynamics. Phase velocities of simulated waves, however, appear higher than those of observed waves, suggesting the importance of tidal thermal structure in determining the Doppler-ducted wave characteristics

    Системный анализ процесса проектирования гибких производственных систем

    Get PDF
    Проведено аналіз об’єктів та процесів проектування ГВС з позицій системного підходу, який показав доцільність розбивки всієї задачі на окремі частини та подальший синтез загального рішення на основі вирішення окремих задач.The Organized analysis object and processes of the designing GPS with position of the system approach, which has shown practicability of the partition the general problem asunder and the further syntheses of the general decision on base of the decision of the separate problems.Проведен анализ объектов и процессов проектирования ГПС с позиций системного подхода, который показал целесообразность разбиения общей задачи на части и дальнейший синтез общего решения на основе решения отдельных задач

    Apokamps produced by repetitive discharges in air

    Get PDF
    New experimental and computational data on apokamps produced by repetitive discharges in air, including a detailed description of the research techniques used, are presented. It has been shown that plasma bullets–streamers in apokamps at low frequencies could start not only from the bright offshoot but also directly from the discharge channel. The experimental and computational data demonstrate that the visual color of apokamp changes from blue to red as the intensity ratio of the second to the first positive nitrogen system decreases with the decreasing pressure

    Modeling And Optimization Of A Multiphase Sequential Technological Process

    Get PDF
    This paper solves two problems of optimizing the operation of a multiphase sequential process (STP): innovative equipment upgrades to increase productivity and determining the optimal number of similar equipment at each phase of the production process

    Spontaneous Branching of Anode-Directed Streamers between Planar Electrodes

    Get PDF
    Non-ionized media subject to strong fields can become locally ionized by penetration of finger-shaped streamers. We study negative streamers between planar electrodes in a simple deterministic continuum approximation. We observe that for sufficiently large fields, the streamer tip can split. This happens close to Firsov's limit of `ideal conductivity'. Qualitatively the tip splitting is due to a Laplacian instability quite like in viscous fingering. For future quantitative analytical progress, our stability analysis of planar fronts identifies the screening length as a regularization mechanism.Comment: 4 pages, 6 figures, submitted to PRL on Nov. 16, 2001, revised version of March 10, 200

    Positive and negative streamers in ambient air: modeling evolution and velocities

    Get PDF
    We simulate short positive and negative streamers in air at standard temperature and pressure. They evolve in homogeneous electric fields or emerge from needle electrodes with voltages of 10 to 20 kV. The streamer velocity at given streamer length depends only weakly on the initial ionization seed, except in the case of negative streamers in homogeneous fields. We characterize the streamers by length, head radius, head charge and field enhancement. We show that the velocity of positive streamers is mainly determined by their radius and in quantitative agreement with recent experimental results both for radius and velocity. The velocity of negative streamers is dominated by electron drift in the enhanced field; in the low local fields of the present simulations, it is little influenced by photo-ionization. Though negative streamer fronts always move at least with the electron drift velocity in the local field, this drift motion broadens the streamer head, decreases the field enhancement and ultimately leads to slower propagation or even extinction of the negative streamer.Comment: 18 pages, 10 figure

    Probing photo-ionization: Experiments on positive streamers in pure gasses and mixtures

    Get PDF
    Positive streamers are thought to propagate by photo-ionization whose parameters depend on the nitrogen:oxygen ratio. Therefore we study streamers in nitrogen with 20%, 0.2% and 0.01% oxygen and in pure nitrogen, as well as in pure oxygen and argon. Our new experimental set-up guarantees contamination of the pure gases to be well below 1 ppm. Streamers in oxygen are difficult to measure as they emit considerably less light in the sensitivity range of our fast ICCD camera than the other gasses. Streamers in pure nitrogen and in all nitrogen/oxygen mixtures look generally similar, but become somewhat thinner and branch more with decreasing oxygen content. In pure nitrogen the streamers can branch so much that they resemble feathers. This feature is even more pronounced in pure argon, with approximately 10^2 hair tips/cm^3 in the feathers at 200 mbar; this density could be interpreted as the free electron density creating avalanches towards the streamer stem. It is remarkable that the streamer velocity is essentially the same for similar voltage and pressure in all nitrogen/oxygen mixtures as well as in pure nitrogen, while the oxygen concentration and therefore the photo-ionization lengths vary by more than five orders of magnitude. Streamers in argon have essentially the same velocity as well. The physical similarity of streamers at different pressures is confirmed in all gases; the minimal diameters are smaller than in earlier measurements.Comment: 28 pages, 14 figures. Major differences with v1: - appendix and spectra removed - subsection regarding effects of repetition frequency added - many more smaller change

    Varied effect of fortification of kale sprouts with novel organic selenium compounds on the synthesis of sulphur and phenolic compounds in relation to cytotoxic, antioxidant and anti-inflammatory activity

    Get PDF
    Selenium deficiency in daily diet is a common problem in many countries, thus searching for new dietary sources of this trace element is an important scientific challenge. Selenium biofortified sprouts from Brassicaceae family are good candidates for new dietary selenium source, as they reveal one of the highest capability to synthesize and accumulate this element. As a part of this extensive search, the influence of novel selenium organic compounds on fortification of kale sprouts biological activity was investigated. The present study is focused on the evaluation of the influence of these compounds on the synthesis of glucosinolates, isothiocyanates, indoles and phenolic acids in kale sprouts, together with the determination of their impact on antioxidant, anti-inflammatory and cytotoxic activity on gastrointestinal, prostate, and thyroid normal and cancer cells. The present study yields the conclusion that fortification of kale sprouts with selenium organic compounds bearing benzoselenoate scaffold influences the production of isothiocyanates, phenolic acids, and enhances the antioxidant properties of fortified sprouts. Notably, fortification with compounds based on benzoselenoate scaffold display chemoprotective properties in various cancer types (gastric, thyroid, and prostate cancer). The present study can facilitate the design of future agrochemicals. Compounds bearing benzoselenoate scaffold or selenyl phenylpiperazine motif seem to be particularly promising for these purposes.This study was partly supported by Polish grants N42/DBS/000231 and N42/DBS/000167. The publication was created with the use of equipment’s (Biotek Synergy microplate reader and Dionex HPLC system) co-financed by the qLIFE Priority Research Area under the program “Excellence Initiative—Research University” (No. 06/IDUB/2019/94) at Jagiellonian University
    corecore