101 research outputs found

    Interlaminar Fracture Toughness Evaluation in Glass/Epoxy Composites Using Acoustic Emission and Finite Element Methods

    Get PDF
    Β© 2014, ASM International. Delamination is one of the most common modes of failure in laminated composites and it leads to the loss of structural strength and stiffness. In this paper, mode I, mode II, and mixed of these pure modes were investigated using mechanical data, Finite Element Method (FEM) and Acoustic Emission (AE) signals. Experimental data were obtained from insitu monitoring of glass/epoxy laminated composites with different lay-ups when subjected to different modes of failure. The main objective was to investigate the behavior of delamination propagation and to evaluate the critical value of the strain energy which is required for onset of the delamination (GC). For the identification of interlaminar fracture toughness of the specimens, four methods were used: (a) ASTM standard methods, (b) FEM analysis, (c) AE method, and (d) sentry function method which is a function of mechanical and AE behaviors of the specimens. The results showed that the GC values obtained by the sentry function method and FEM analysis were in a close agreement with the results of nonlinearity methods which is recommended in the ASTM standards. It was also found that the specimens under different loading conditions and various lay-up have different GC values. These differences are related to different stress components distribution in the specimens which induce various damage mechanisms. Accordingly, stress components distribution obtained from FEM analyses were in agreement with SEM observations of the damaged surfaces of the specimens

    Over-Expression of DSCAM and COL6A2 Cooperatively Generates Congenital Heart Defects

    Get PDF
    A significant current challenge in human genetics is the identification of interacting genetic loci mediating complex polygenic disorders. One of the best characterized polygenic diseases is Down syndrome (DS), which results from an extra copy of part or all of chromosome 21. A short interval near the distal tip of chromosome 21 contributes to congenital heart defects (CHD), and a variety of indirect genetic evidence suggests that multiple candidate genes in this region may contribute to this phenotype. We devised a tiered genetic approach to identify interacting CHD candidate genes. We first used the well vetted Drosophila heart as an assay to identify interacting CHD candidate genes by expressing them alone and in all possible pairwise combinations and testing for effects on rhythmicity or heart failure following stress. This comprehensive analysis identified DSCAM and COL6A2 as the most strongly interacting pair of genes. We then over-expressed these two genes alone or in combination in the mouse heart. While over-expression of either gene alone did not affect viability and had little or no effect on heart physiology or morphology, co-expression of the two genes resulted in β‰ˆ50% mortality and severe physiological and morphological defects, including atrial septal defects and cardiac hypertrophy. Cooperative interactions between DSCAM and COL6A2 were also observed in the H9C2 cardiac cell line and transcriptional analysis of this interaction points to genes involved in adhesion and cardiac hypertrophy. Our success in defining a cooperative interaction between DSCAM and COL6A2 suggests that the multi-tiered genetic approach we have taken involving human mapping data, comprehensive combinatorial screening in Drosophila, and validation in vivo in mice and in mammalian cells lines should be applicable to identifying specific loci mediating a broad variety of other polygenic disorders

    Genetic and Physiologic Dissection of the Vertebrate Cardiac Conduction System

    Get PDF
    Vertebrate hearts depend on highly specialized cardiomyocytes that form the cardiac conduction system (CCS) to coordinate chamber contraction and drive blood efficiently and unidirectionally throughout the organism. Defects in this specialized wiring system can lead to syncope and sudden cardiac death. Thus, a greater understanding of cardiac conduction development may help to prevent these devastating clinical outcomes. Utilizing a cardiac-specific fluorescent calcium indicator zebrafish transgenic line, Tg(cmlc2:gCaMP)s878, that allows for in vivo optical mapping analysis in intact animals, we identified and analyzed four distinct stages of cardiac conduction development that correspond to cellular and anatomical changes of the developing heart. Additionally, we observed that epigenetic factors, such as hemodynamic flow and contraction, regulate the fast conduction network of this specialized electrical system. To identify novel regulators of the CCS, we designed and performed a new, physiology-based, forward genetic screen and identified for the first time, to our knowledge, 17 conduction-specific mutations. Positional cloning of hobgoblins634 revealed that tcf2, a homeobox transcription factor gene involved in mature onset diabetes of the young and familial glomerulocystic kidney disease, also regulates conduction between the atrium and the ventricle. The combination of the Tg(cmlc2:gCaMP)s878 line/in vivo optical mapping technique and characterization of cardiac conduction mutants provides a novel multidisciplinary approach to further understand the molecular determinants of the vertebrate CCS

    MLP (muscle LIM protein) as a stress sensor in the heart

    Get PDF
    Muscle LIM protein (MLP, also known as cysteine rich protein 3 (CSRP3, CRP3)) is a muscle-specific-expressed LIM-only protein. It consists of 194 amino-acids and has been described initially as a factor involved in myogenesis (Arber et al. Cell 79:221–231, 1994). MLP soon became an important model for experimental cardiology when it was first demonstrated that MLP deficiency leads to myocardial hypertrophy followed by a dilated cardiomyopathy and heart failure phenotype (Arber et al. Cell 88:393–403, 1997). At this time, this was the first genetically altered animal model to develop this devastating disease. Interestingly, MLP was also found to be down-regulated in humans with heart failure (Zolk et al. Circulation 101:2674–2677, 2000) and MLP mutations are able to cause hypertrophic and dilated forms of cardiomyopathy in humans (Bos et al. Mol Genet Metab 88:78–85, 2006; Geier et al. Circulation 107:1390–1395, 2003; Hershberger et al. Clin Transl Sci 1:21–26, 2008; KnΓΆll et al. Cell 111:943–955, 2002; KnΓΆll et al. Circ Res 106:695–704, 2010; Mohapatra et al. Mol Genet Metab 80:207–215, 2003). Although considerable efforts have been undertaken to unravel the underlying molecular mechanismsβ€”how MLP mutations, either in model organisms or in the human setting cause these diseases are still unclear. In contrast, only precise knowledge of the underlying molecular mechanisms will allow the development of novel and innovative therapeutic strategies to combat this otherwise lethal condition. The focus of this review will be on the function of MLP in cardiac mechanosensation and we shall point to possible future directions in MLP research

    Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2

    Get PDF
    The muscle-specific RING finger proteins MuRF1 and MuRF2 have been proposed to regulate protein degradation and gene expression in muscle tissues. We have tested the in vivo roles of MuRF1 and MuRF2 for muscle metabolism by using knockout (KO) mouse models. Single MuRF1 and MuRF2 KO mice are healthy and have normal muscles. Double knockout (dKO) mice obtained by the inactivation of all four MuRF1 and MuRF2 alleles developed extreme cardiac and milder skeletal muscle hypertrophy. Muscle hypertrophy in dKO mice was maintained throughout the murine life span and was associated with chronically activated muscle protein synthesis. During ageing (months 4–18), skeletal muscle mass remained stable, whereas body fat content did not increase in dKO mice as compared with wild-type controls. Other catabolic factors such as MAFbox/atrogin1 were expressed at normal levels and did not respond to or prevent muscle hypertrophy in dKO mice. Thus, combined inhibition of MuRF1/MuRF2 could provide a potent strategy to stimulate striated muscles anabolically and to protect muscles from sarcopenia during ageing

    Insights into the Molecular Evolution of the PDZ/LIM Family and Identification of a Novel Conserved Protein Motif

    Get PDF
    The PDZ and LIM domain-containing protein family is encoded by a diverse group of genes whose phylogeny has currently not been analyzed. In mammals, ten genes are found that encode both a PDZ- and one or several LIM-domains. These genes are: ALP, RIL, Elfin (CLP36), Mystique, Enigma (LMP-1), Enigma homologue (ENH), ZASP (Cypher, Oracle), LMO7 and the two LIM domain kinases (LIMK1 and LIMK2). As conventional alignment and phylogenetic procedures of full-length sequences fell short of elucidating the evolutionary history of these genes, we started to analyze the PDZ and LIM domain sequences themselves. Using information from most sequenced eukaryotic lineages, our phylogenetic analysis is based on full-length cDNA-, EST-derived- and genomic- PDZ and LIM domain sequences of over 25 species, ranging from yeast to humans. Plant and protozoan homologs were not found. Our phylogenetic analysis identifies a number of domain duplication and rearrangement events, and shows a single convergent event during evolution of the PDZ/LIM family. Further, we describe the separation of the ALP and Enigma subfamilies in lower vertebrates and identify a novel consensus motif, which we call β€˜ALP-like motif’ (AM). This motif is highly-conserved between ALP subfamily proteins of diverse organisms. We used here a combinatorial approach to define the relation of the PDZ and LIM domain encoding genes and to reconstruct their phylogeny. This analysis allowed us to classify the PDZ/LIM family and to suggest a meaningful model for the molecular evolution of the diverse gene architectures found in this multi-domain family

    Endothelial Neuropilin Disruption in Mice Causes DiGeorge Syndrome-Like Malformations via Mechanisms Distinct to Those Caused by Loss of Tbx1

    Get PDF
    The spectrum of human congenital malformations known as DiGeorge syndrome (DGS) is replicated in mice by mutation of Tbx1. Vegfa has been proposed as a modifier of DGS, based in part on the occurrence of comparable phenotypes in Tbx1 and Vegfa mutant mice. Many additional genes have been shown to cause DGS-like phenotypes in mice when mutated; these generally intersect in some manner with Tbx1, and therefore impact the same developmental processes in which Tbx1 itself is involved. In this study, using Tie2Cre, we show that endothelial-specific mutation of the gene encoding the VEGFA coreceptor neuropilin-1 (Nrp1) also replicates the most prominent terminal phenotypes that typify DGS. However, the developmental etiologies of these defects are fundamentally different from those caused by absence of TBX1. In Tie2Cre/Nrp1 mutants, initial pharyngeal organization is normal but subsequent pharyngeal organ growth is impaired, second heart field differentiation is normal but cardiac outflow tract cushion organization is distorted, neural crest cell migration is normal, and palatal mesenchyme proliferation is impaired with no change in apoptosis. Our results demonstrate that impairment of VEGF-dependent endothelial pathways leads to a spectrum of DiGeorge syndrome-type malformations, through processes that are distinguishable from those controlled by Tbx1

    A Comparative Structural Bioinformatics Analysis of the Insulin Receptor Family Ectodomain Based on Phylogenetic Information

    Get PDF
    The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight β€˜twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals

    Complex SUMO-1 Regulation of Cardiac Transcription Factor Nkx2-5

    Get PDF
    Reversible post-translational protein modifications such as SUMOylation add complexity to cardiac transcriptional regulation. The homeodomain transcription factor Nkx2-5/Csx is essential for heart specification and morphogenesis. It has been previously suggested that SUMOylation of lysine 51 (K51) of Nkx2-5 is essential for its DNA binding and transcriptional activation. Here, we confirm that SUMOylation strongly enhances Nkx2-5 transcriptional activity and that residue K51 of Nkx2-5 is a SUMOylation target. However, in a range of cultured cell lines we find that a point mutation of K51 to arginine (K51R) does not affect Nkx2-5 activity or DNA binding, suggesting the existence of additional Nkx2-5 SUMOylated residues. Using biochemical assays, we demonstrate that Nkx2-5 is SUMOylated on at least one additional site, and this is the predominant site in cardiac cells. The second site is either non-canonical or a β€œshifting” site, as mutation of predicted consensus sites and indeed every individual lysine in the context of the K51R mutation failed to impair Nkx2-5 transcriptional synergism with SUMO, or its nuclear localization and DNA binding. We also observe SUMOylation of Nkx2-5 cofactors, which may be critical to Nkx2-5 regulation. Our data reveal highly complex regulatory mechanisms driven by SUMOylation to modulate Nkx2-5 activity

    The complete salmonid IGF-IR gene repertoire and its transcriptional response to disease

    Get PDF
    Acknowledgements This work was supported financially by the European Community’s Seventh Framework Program (FP7/2007-13) under Grant 442 Agreements 222719 (LIFECYCLE). AA was supported by a PhD studentship from Kuwait University. The authors thank Mr Anthony K. Redmond (University of Aberdeen) for assisting with gene prediction and phylogenetic analysis.Peer reviewedPublisher PD
    • …
    corecore