503 research outputs found
Language Acquisition: Do as You Hear
AbstractIt is not uncommon to recognize a specific action by the sound it creates. Neurons have been discovered in monkey premotor cortex that may contribute to this ability; they respond to both performing an action and hearing its action-related sound, and may be critical for communicating with others, learning gestures and even acquiring language
Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: why, how, and what is the ultimate goal?
Sustaining brain and cognitive function across the lifespan must be one of the main biomedical goals of the twenty-first century. We need to aim to prevent neuropsychiatric diseases and, thus, to identify and remediate brain and cognitive dysfunction before clinical symptoms manifest and disability develops. The brain undergoes a complex array of changes from developmental years into old age, putatively the underpinnings of changes in cognition and behavior throughout life. A functionally ânormalâ brain is a changing brain, a brain whose capacity and mechanisms of change are shifting appropriately from one time-point to another in a given individual's life. Therefore, assessing the mechanisms of brain plasticity across the lifespan is critical to gain insight into an individual's brain health. Indexing brain plasticity in humans is possible with transcranial magnetic stimulation (TMS), which, in combination with neuroimaging, provides a powerful tool for exploring local cortical and brain network plasticity. Here, we review investigations to date, summarize findings, and discuss some of the challenges that need to be solved to enhance the use of TMS measures of brain plasticity across all ages. Ultimately, TMS measures of plasticity can become the foundation for a brain health index (BHI) to enable objective correlates of an individual's brain health over time, assessment across diseases and disorders, and reliable evaluation of indicators of efficacy of future preventive and therapeutic interventions
Recommended from our members
Reliability of Resting-State Microstate Features in Electroencephalography
Background: Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states (âmicrostatesâ) that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis. Methods: We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes. Results: The approach of identifying a single set of âglobalâ microstate maps showed the highest reliability (mean Cronbach's α>0.8, SEM â10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α>0.9). All features had high test-retest reliability with 19 and 8 electrodes. Conclusions: High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health
Using non-invasive brain stimulation to augment motor training-induced plasticity
Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date
Modulation of corticospinal excitability by transcranial magnetic stimulation in children and adolescents with autism spectrum disorder
The developmental pathophysiology of autism spectrum disorders (ASD) is currently not fully understood. However, multiple lines of evidence suggest that the behavioral phenotype may result from dysfunctional inhibitory control over excitatory synaptic plasticity. Consistent with this claim, previous studies indicate that adults with Aspergerâs Syndrome show an abnormally extended modulation of corticospinal excitability following a train of repetitive transcranial magnetic stimulation (rTMS). As ASD is a developmental disorder, the current study aimed to explore the effect of development on the duration of modulation of corticospinal excitability in children and adolescents with ASD. Additionally, as the application of rTMS to the understanding and treatment of pediatric neurological and psychiatric disorders is an emerging field, this study further sought to provide evidence for the safety and tolerability of rTMS in children and adolescents with ASD. Corticospinal excitability was measured by applying single pulses of TMS to the primary motor cortex both before and following a 40 s train of continuous theta burst stimulation. 19 high-functioning males ages 9â18 with ASD participated in this study. Results from this study reveal a positive linear relationship between age and duration of modulation of rTMS after-effects. Specifically we found that the older participants had a longer lasting response. Furthermore, though the specific protocol employed typically suppresses corticospinal excitability in adults, more than one third of our sample had a paradoxical facilitatory response to the stimulation. Results support the safety and tolerability of rTMS in pediatric clinical populations. Data also support published theories implicating aberrant plasticity and GABAergic dysfunction in this population
Awareness Modifies the Skill-Learning Benefits of Sleep
Behind every skilled movement lies months of practice. However, practice alone is not responsible for the acquisition of all skill; performance can improve between, not just within, practice sessions. An important principle shaping these offline improvements may be an individual's awareness of learning a new skill. New skills, such as a sequence of finger movements, can be learned unintentionally (with little awareness for the sequence, implicit learning) or intentionally (explicit learning). We measured skill in an implicit and explicit sequence-learning task before and after a 12 hr interval. This interval either did (8 p.m. to 8 a.m.) or did not (8 a.m. to 8 p.m.) include a period of sleep. Following explicit sequence learning, offline skill improvements were only observed when the 12 hr interval included sleep. This overnight improvement was correlated with the amount of NREM sleep. The same improvement could also be observed in the evening (with an interval from 8 p.m. to 8 p.m.), so it was not coupled to retesting at a particular time of day and cannot therefore be attributed to circadian factors. In contrast, in the implicit learning task, offline learning was observed regardless of whether the 12 hr interval did or did not contain a period of sleep. However, these improvements were not observed with only a 15 min interval between sessions. Therefore, the practice available within each session cannot account for these skill improvements. Instead, sufficient time is necessary for offline learning to occur. These results show a behavioral dissociation, based upon an individual's awareness for having learned a sequence of finger movements. Offline learning is sleep dependent for explicit skills but time dependent for implicit skills
Ontology-based solutions for interoperability among product lifecycle management systems: A systematic literature review
During recent years, globalization has had an impact on the competitive capacity of industries, forcing them to integrate their productive processes with other, geographically distributed, facilities. This requires the information systems that support such processes to interoperate. Significant attention has been paid to the development of ontology-based solutions, which are meant to tackle issues from inconsistency to semantic interoperability and knowledge reusability. This paper looks into how the available technology, models and ontology-based solutions might interact within the manufacturing industry environment to achieve semantic interoperability among industrial information systems. Through a systematic literature review, this paper has aimed to identify the most relevant elements to consider in the development of an ontology-based solution and how these solutions are being deployed in industry. The research analyzed 54 studies in alignment with the specific requirements of our research questions. The most relevant results show that ontology-based solutions can be set up using OWL as the ontology language, ProtĂ©gĂ© as the ontology modeling tool, Jena as the application programming interface to interact with the built ontology, and different standards from the International Organization for Standardization Technical Committee 184, Subcommittee 4 or 5, to get the foundational concepts, axioms, and relationships to develop the knowledge base. We believe that the findings of this study make an important contribution to practitioners and researchers as they provide useful information about different projects and choices involved in undertaking projects in the field of industrial ontology application.Fil: Fraga, Alvaro Luis. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad TecnolĂłgica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Vegetti, Maria Marcela. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad TecnolĂłgica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Leone, Horacio Pascual. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad TecnolĂłgica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentin
Contrasting early visual cortical activation states causally involved in visual imagery and shortâterm memory
AbstractWhether visual imagery and visual shortâterm memory (STM) share the same neural resources, and the extent to which the early visual cortex (V1/V2) is involved in these processes, has been the subject of much debate. Here, we used transcranial magnetic stimulation (TMS) in two separate experiments to contrast the neural states associated with visual imagery and visual STM in the early visual cortex. In Experiment 1, we investigated V1/V2 activation states at the end of the retention phase in a visual imagery and a visual STM task. V1/V2 TMS facilitated performance in both tasks; the finding that imagery and STM interacted with TMS in the same way suggests that the two processes have similar effects on early visual cortical excitability. In Experiment 2, we investigated V1/V2 activation states at the beginning of the retention phase. V1/V2 TMS impaired performance in the visual STM task, whereas it had no effect on the imagery task. Taken together, our findings show that the late phases of the early visual cortical activation state associated with visual imagery and visual STM are similar; differences between the two processes are apparent in the early phases of the tasks. Our results also suggest that the causal role of the early visual cortex in visual STM includes both the initial translation of the visual input into working memory and the subsequent maintenance of the mental representation. Finally, our findings indicate that visual STM sensory recruitment in working memory might act via excitability modulation of V1/V2 neurons
Recommended from our members
Moral Enhancement Using Non-invasive Brain Stimulation
Biomedical enhancement refers to the use of biomedical interventions to improve capacities beyond normal, rather than to treat deficiencies due to diseases. Enhancement can target physical or cognitive capacities, but also complex human behaviors such as morality. However, the complexity of normal moral behavior makes it unlikely that morality is a single capacity that can be deficient or enhanced. Instead, our central hypothesis will be that moral behavior results from multiple, interacting cognitive-affective networks in the brain. First, we will test this hypothesis by reviewing evidence for modulation of moral behavior using non-invasive brain stimulation. Next, we will discuss how this evidence affects ethical issues related to the use of moral enhancement. We end with the conclusion that while brain stimulation has the potential to alter moral behavior, such alteration is unlikely to improve moral behavior in all situations, and may even lead to less morally desirable behavior in some instances
- âŠ