425 research outputs found

    Les sols actuels et les formations superficielles des crêtes nord-est du Nimba (Guinée) : contribution à l'étude géomorphologique du Quaternaire de la chaîne

    Get PDF
    L'analyse des différents matériaux de surface (sols, altérites, minerais) de la région nord-est des crêtes du massif du Nimba (Guinée) permet de reconstituer les épisodes majeurs de l'évolution géomorphologique quaternaire de cette région. Elle fournit également des indices de phénomènes pédogénétiques anciens et permet de juger le type de la pédogenèse actuell

    Mobility assessment in people with Alzheimer disease using smartphone sensors

    Full text link
    [EN] Background Understanding the functional status of people with Alzheimer Disease (AD), both in a single (ST) and cognitive dual task (DT) activities is essential for identifying signs of early-stage neurodegeneration. This study aims to compare the performance quality of several tasks using sensors embedded in an Android device, among people at different stages of Alzheimer and people without dementia. The secondary aim is to analyze the effect of cognitive task performance on mobility tasks. Methods This is a cross-sectional study including 22 participants in the control group (CG), 18 in the group with mild AD and 22 in the group with moderate AD. They performed two mobility tests, under ST and DT conditions, which were registered using an Android device. Postural control was measured by medial-lateral and anterior-posterior displacements of the COM (MLDisp and APDisp, respectively) and gait, with the vertical and medial-lateral range of the COM (Vrange and MLrange). Further, the sit-to-stand (PStand) and turning and sit power (PTurnSit), the total time required to complete the test and the reaction time were measured. Results There were no differences between the two AD stages either for ST or DT in any of the variables (p > 0.05). Nevertheless, people at both stages showed significantly lower values of PStand and PTurnSit and larger Total time and Reaction time compared to CG (p < 0.05). Further, Vrange is also lower in CDR1G than in CG (p < 0.05). The DT had a significant deleterious effect on MLDisp in all groups (p < 0.05) and on APDisp only in moderate AD for DT. Conclusions Our findings indicate that AD patients present impairments in some key functional abilities, such as gait, turning and sitting, sit to stand, and reaction time, both in mild and moderate AD. Nevertheless, an exclusively cognitive task only influences the postural control in people with AD.This work was funded by the Spanish Government, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, and co-financed by EU FEDER funds (Grant DPI2013-44227-R). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Serra-Añó, P.; Pedrero, J.; Hurtado-Abellán, J.; Inglés, M.; Espí-López, G.; Lopez Pascual, J. (2019). Mobility assessment in people with Alzheimer disease using smartphone sensors. Journal of NeuroEngineering and Rehabilitation. 16(1). https://doi.org/10.1186/s12984-019-0576-yS161Association A. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement. 2017;13(4):325–73.Harrington MG, Chiang J, Pogoda JM, Gomez M, Thomas K, Marion SD, et al. Executive function changes before memory in preclinical Alzheimer’s pathology: a prospective, cross-sectional, case control study. PLoS One. 2013;8(11):e79378.Buckner RL. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron. 2004;44(1):195–208.Beauchet O, Launay CP, Barden J, Liu-Ambrose T, Chester VL, Szturm T, et al. Association between falls and brain subvolumes: results from a cross-sectional analysis in healthy older adults. Brain Topogr. 2017;30(2):272–80.Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord Off J Mov Disord Soc. 2008;23(3):329–42.Verghese J, Wang C, Holtzer R, Lipton R, Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry. 2007;78(9):929–35.Beauchet O, Annweiler C, Callisaya ML, De Cock A-M, Helbostad JL, Kressig RW, et al. Poor gait performance and prediction of dementia: results from a meta-analysis. J Am Med Dir Assoc. 2016;17(6):482–90.Rucco R, Agosti V, Jacini F, Sorrentino P, Varriale P, De Stefano M, et al. Spatio-temporal and kinematic gait analysis in patients with frontotemporal dementia and Alzheimer’s disease through 3D motion capture. Gait Posture. 2017;52:312–7.de Melo Coelho FG, Stella F, de Andrade LP, Barbieri FA, Santos-Galduróz RF, Gobbi S, et al. Gait and risk of falls associated with frontal cognitive functions at different stages of Alzheimer’s disease. Aging Neuropsychol Cogn. 2012;19(5):644–56.Beauchet O, Allali G, Launay C, Herrmann FR, Annweiler C. Gait variability at fast-pace walking speed: a biomarker of mild cognitive impairment? J Nutr Health Aging. 2013;17(3):235–9.Ganz DA, Bao Y, Shekelle PG, Rubenstein LZ. Will my patient fall? JAMA. 2007;297(1):77–86.Egerton T, Danoudis M, Huxham F, Iansek R. Central gait control mechanisms and the stride length - cadence relationship. Gait Posture. 2011;34(2):178–82.Baddeley AD, Baddeley HA, Bucks RS, Wilcock GK. Attentional control in Alzheimer’s disease. Brain. 2001;124(8):1492–508.Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. Lancet Neurol. 2007;6(8):734–46.Coubard OA, Ferrufino L, Boura M, Gripon A, Renaud M, Bherer L. Attentional control in normal aging and Alzheimer’s disease. Neuropsychology. 2011;25(3):353–67.Ries JD, Echternach JL, Nof L, Gagnon BM. Test-retest reliability and minimal detectable change scores for the timed “up & go” test, the six-minute walk test, and gait speed in people with Alzheimer disease. Phys Ther. 2009;89(6):569–79.Tamura K, Kocher M, Finer L, Murata N, Stickley C. Reliability of clinically feasible dual-task tests: expanded timed get up and go test as a motor task on young healthy individuals. Gait Posture. 2018;60:22–7.Muir SW, Speechley M, Wells J, Borrie M, Gopaul K, Montero-Odasso M. Gait assessment in mild cognitive impairment and Alzheimer’s disease: the effect of dual-task challenges across the cognitive spectrum. Gait Posture. 2012;35(1):96–100.Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–4.Ansai JH, Andrade LP, Rossi PG, Takahashi AC, Vale FA, Rebelatto JR. Gait, dual task and history of falls in elderly with preserved cognition, mild cognitive impairment, and mild Alzheimer’s disease. Braz J Phys Ther. 2017;21(2):144–51.Herrero MJ, Blanch J, Peri JM, De Pablo J, Pintor L, Bulbena A. A validation study of the hospital anxiety and depression scale (HADS) in a Spanish population. Gen Hosp Psychiatry. 2003;25(4):277–83.Bower ES, Wetherell JL, Merz CC, Petkus AJ, Malcarne VL, Lenze EJ. A new measure of fear of falling: psychometric properties of the fear of falling questionnaire revised (FFQ-R). Int Psychogeriatr. 2015;27(7):1121–33.López-Pascual J, Hurtado AJ, Inglés M, Espí-López G, Serra-Añó P. P 151-reliability of variables measured with an android device during a modified timed up and go test in patients with Alzheimer’s disease. Gait Posture. 2018;65:484.Nishiguchi S, Yamada M, Nagai K, Mori S, Kajiwara Y, Sonoda T, et al. Reliability and validity of gait analysis by android-based smartphone. Telemed J E Health. 2012;18(4):292–6.Zijlstra W, Hof AL. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture. 2003;18(2):1–10.Ribeiro JG, De Castro JT, Freire JL. Using the FFT-DDI method to measure displacements with piezoelectric, resistive and ICP accelerometers. In: Conference and exposition on structural dynamics. Rio de Janeiro: Citeseer; 2003.Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebust BM. Measures of postural steadiness: differences between healthy young and elderly adults. Biomed Eng IEEE Trans On. 1996;43(9):956–66.Esser P, Dawes H, Collett J, Howells K. IMU: inertial sensing of vertical CoM movement. J Biomech. 2009;42(10):1578–81.Gordon KE, Ferris DP, Kuo AD. Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait. Arch Phys Med Rehabil. 2009;90(1):136–44.Gard SA, Miff SC, Kuo AD. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Hum Mov Sci. 2004;22(6):597–610.Weinert-Aplin RA, Twiste M, Jarvis HL, Bennett AN, Baker RJ. Medial-lateral centre of mass displacement and base of support are equally good predictors of metabolic cost in amputee walking. Gait Posture. 2017;51:41–6.Chen S-H, Lo O-Y, Kay T, Chou L-S. Concurrent phone texting alters crossing behavior and induces gait imbalance during obstacle crossing. Gait Posture. 2018;62:422–5.Lindemann U, Claus H, Stuber M, Augat P, Muche R, Nikolaus T, et al. Measuring power during the sit-to-stand transfer. Eur J Appl Physiol. 2003;89(5):466–70.Manckoundia P, Mourey F, Pfitzenmeyer P, Papaxanthis C. Comparison of motor strategies in sit-to-stand and back-to-sit motions between healthy and Alzheimer’s disease elderly subjects. Neuroscience. 2006;137(2):385–92.Christ BU, Combrinck MI, Thomas KG. Both reaction time and accuracy measures of Intraindividual variability predict cognitive performance in Alzheimer’s disease. Front Hum Neurosci. 2018;12:124–35.Vienne A, Barrois RP, Buffat S, Ricard D, Vidal P-P. Inertial sensors to assess gait quality in patients with neurological disorders: a systematic review of technical and analytical challenges. Front Psychol. 2017;8:817.Wang W-H, Chung P-C, Yang G-L, Lin C-W, Hsu Y-L, Pai M-C. An inertial sensor based balance and gait analysis system. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS): Rio de Janeiro: IEEE; 2015. p. 2636–9.Wüest S, Masse F, Aminian K, Gonzenbach R, De Bruin ED. Reliability and validity of the inertial sensor-based timed “up and go” test in individuals affected by stroke. J Rehabil Res Dev. 2016;53(5):599–610.Nguyen H, Lebel K, Boissy P, Bogard S, Goubault E, Duval C. Auto detection and segmentation of daily living activities during a timed up and go task in people with Parkinson’s disease using multiple inertial sensors. J Neuroengineering Rehabil. 2017;14(1):26.Ansai JH, de Andrade LP, Rossi PG, Nakagawa TH, Vale FAC, Rebelatto JR. Differences in timed up and go subtasks between older people with mild cognitive impairment and mild Alzheimer’s disease. Mot Control. 2018;27:1–12.Eggermont LH, Gavett BE, Volkers KM, Blankevoort CG, Scherder EJ, Jefferson AL, et al. Lower-extremity function in cognitively healthy aging, mild cognitive impairment, and Alzheimer’s disease. Arch Phys Med Rehabil. 2010;91(4):584–8.Leandri M, Cammisuli S, Cammarata S, Baratto L, Campbell J, Simonini M, et al. Balance features in Alzheimer’s disease and amnestic mild cognitive impairment. J Alzheimers Dis. 2009;16(1):113–20.Nakamura T, Meguro K, Yamazaki H, Okuzumi H, Tanaka A, Horikawa A, et al. Postural and gait disturbance correlated with decreased frontal cerebral blood flow in Alzheimer disease. Alzheimer Dis Assoc Disord. 1997;11(3):132–9.Cavagna GA, Margaria R. Mechanics of walking. J Appl Physiol. 1966;21(1):271–8.Ganea R, Paraschiv-Ionescu A, Büla C, Rochat S, Aminian K. Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Med Eng Phys. 2011;33(9):1086–93.Cameron DM, Bohannon RW, Garrett GE, Owen SV, Cameron DA. Physical impairments related to kinetic energy during sit-to-stand and curb-climbing following stroke. Clin Biomech. 2003;18(4):332–40.McGuinness B, Barrett SL, Craig D, Lawson J, Passmore AP. Attention deficits in Alzheimer’s disease and vascular dementia. J Neurol Neurosurg Psychiatry. 2010;81(2):157–9.Phillips M, Rogers P, Haworth J, Bayer A, Tales A. Intra-individual reaction time variability in mild cognitive impairment and Alzheimer’s disease: gender, processing load and speed factors. PLoS One. 2013;8(6):e65712

    Assessment of Functional Activities in Individuals with Parkinson's Disease Using a Simple and Reliable Smartphone-Based Procedure

    Full text link
    [EN] Parkinson's disease (PD) is a progressive neurodegenerative disorder leading to functional impairment. In order to monitor the progression of the disease and to implement individualized therapeutic approaches, functional assessments are paramount. The aim of this study was to determine the impact of PD on balance, gait, turn-to-sit and sit-to-stand by means of a single short-duration reliable test using a single inertial measurement unit embedded in a smartphone device. Study participants included 29 individuals with mild-to moderate PD (PG) and 31 age-matched healthy counterparts (CG). Functional assessment with FallSkip((R)) included postural control (i.e., Medial-Lateral (ML) and Anterior-Posterior (AP) displacements), gait (Vertical (V) and Medial-Lateral (ML) ranges), turn-to-sit (time) and sit-to-stand (power) tests, total time and gait reaction time. Our results disclosed a reliable procedure (intra-class correlation coefficient (ICC) = 0.58-0.92). PG displayed significantly larger ML and AP displacements during the postural test, a decrease in ML range while walking and a longer time needed to perform the turn-to-sit task than CG (p 0.05). In conclusion, people with mild-to-moderate PD exhibit impaired postural control, altered gait strategy and slower turn-to-sit performance than age-matched healthy people.This project (IMAMCJ/2020/1) was funded by Instituto Valenciano de Competitividad Empresarial (IVACE) and by the Valencian Regional Government (IVACE-GVA).Serra-Añó, P.; Pedrero, J.; Inglés, M.; Aguilar-Rodríguez, M.; Vargas-Villanueva, I.; Lopez Pascual, J. (2020). Assessment of Functional Activities in Individuals with Parkinson's Disease Using a Simple and Reliable Smartphone-Based Procedure. International Journal of Environmental research and Public Health (Online). 17(11):1-13. https://doi.org/10.3390/ijerph17114123S1131711Soh, S.-E., McGinley, J. L., Watts, J. J., Iansek, R., Murphy, A. T., Menz, H. B., … Morris, M. E. (2012). Determinants of health-related quality of life in people with Parkinson’s disease: a path analysis. Quality of Life Research, 22(7), 1543-1553. doi:10.1007/s11136-012-0289-1Mak, M. K. Y., & Wong-Yu, I. S. K. (2019). Exercise for Parkinson’s disease. Exercise on Brain Health, 1-44. doi:10.1016/bs.irn.2019.06.001Tysnes, O.-B., & Storstein, A. (2017). Epidemiology of Parkinson’s disease. Journal of Neural Transmission, 124(8), 901-905. doi:10.1007/s00702-017-1686-yKing, L. A., Wilhelm, J., Chen, Y., Blehm, R., Nutt, J., Chen, Z., … Horak, F. B. (2015). Effects of Group, Individual, and Home Exercise in Persons With Parkinson Disease. Journal of Neurologic Physical Therapy, 39(4), 204-212. doi:10.1097/npt.0000000000000101Haji Ghassemi, N., Hannink, J., Roth, N., Gaßner, H., Marxreiter, F., Klucken, J., & Eskofier, B. M. (2019). Turning Analysis during Standardized Test Using On-Shoe Wearable Sensors in Parkinson’s Disease. Sensors, 19(14), 3103. doi:10.3390/s19143103Weiss, A., Herman, T., Mirelman, A., Shiratzky, S. S., Giladi, N., Barnes, L. L., … Hausdorff, J. M. (2019). The transition between turning and sitting in patients with Parkinson’s disease: A wearable device detects an unexpected sequence of events. Gait & Posture, 67, 224-229. doi:10.1016/j.gaitpost.2018.10.018Pham, M. H., Warmerdam, E., Elshehabi, M., Schlenstedt, C., Bergeest, L.-M., Heller, M., … Maetzler, W. (2018). Validation of a Lower Back «Wearable»-Based Sit-to-Stand and Stand-to-Sit Algorithm for Patients With Parkinson’s Disease and Older Adults in a Home-Like Environment. Frontiers in Neurology, 9. doi:10.3389/fneur.2018.00652González Rojas, H. A., Cuevas, P. C., Zayas Figueras, E. E., Foix, S. C., & Sánchez Egea, A. J. (2017). Time measurement characterization of stand-to-sit and sit-to-stand transitions by using a smartphone. Medical & Biological Engineering & Computing, 56(5), 879-888. doi:10.1007/s11517-017-1728-5Del Din, S., Godfrey, A., Mazzà, C., Lord, S., & Rochester, L. (2016). Free-living monitoring of Parkinson’s disease: Lessons from the field. Movement Disorders, 31(9), 1293-1313. doi:10.1002/mds.26718Galán-Mercant, A., Barón-López, F. J., Labajos-Manzanares, M. T., & Cuesta-Vargas, A. I. (2014). Reliability and criterion-related validity with a smartphone used in timed-up-and-go test. BioMedical Engineering OnLine, 13(1). doi:10.1186/1475-925x-13-156López-Pascual, J., Hurtado Abellán, J., Inglés, M., Espí-López, G., & Serra-Añó, P. (2018). P 151 – Reliability of variables measured with an Android device during a modified timed up and go test in patients with Alzheimer’s disease. Gait & Posture, 65, 484-485. doi:10.1016/j.gaitpost.2018.07.072Serra-Añó, P., Pedrero-Sánchez, J. F., Hurtado-Abellán, J., Inglés, M., Espí-López, G. V., & López-Pascual, J. (2019). Mobility assessment in people with Alzheimer disease using smartphone sensors. Journal of NeuroEngineering and Rehabilitation, 16(1). doi:10.1186/s12984-019-0576-yKerr, G. K., Worringham, C. J., Cole, M. H., Lacherez, P. F., Wood, J. M., & Silburn, P. A. (2010). Predictors of future falls in Parkinson disease. Neurology, 75(2), 116-124. doi:10.1212/wnl.0b013e3181e7b688Channa, A., Popescu, N., & Ciobanu, V. (2020). Wearable Solutions for Patients with Parkinson’s Disease and Neurocognitive Disorder: A Systematic Review. Sensors, 20(9), 2713. doi:10.3390/s20092713Hughes, A. J., Daniel, S. E., Kilford, L., & Lees, A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery & Psychiatry, 55(3), 181-184. doi:10.1136/jnnp.55.3.181Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6Dal Bello-Haas, V., Klassen, L., Sheppard, M. S., & Metcalfe, A. (2011). Psychometric Properties of Activity, Self-Efficacy, and Quality-of-Life Measures in Individuals with Parkinson Disease. Physiotherapy Canada, 63(1), 47-57. doi:10.3138/ptc.2009-08Zijlstra, W., & Hof, A. L. (2003). Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait & Posture, 18(2), 1-10. doi:10.1016/s0966-6362(02)00190-xPrieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., & Myklebust, B. M. (1996). Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Transactions on Biomedical Engineering, 43(9), 956-966. doi:10.1109/10.532130Esser, P., Dawes, H., Collett, J., & Howells, K. (2009). IMU: Inertial sensing of vertical CoM movement. Journal of Biomechanics, 42(10), 1578-1581. doi:10.1016/j.jbiomech.2009.03.049Gordon, K. E., Ferris, D. P., & Kuo, A. D. (2009). Metabolic and Mechanical Energy Costs of Reducing Vertical Center of Mass Movement During Gait. Archives of Physical Medicine and Rehabilitation, 90(1), 136-144. doi:10.1016/j.apmr.2008.07.014Lindemann, U., Claus, H., Stuber, M., Augat, P., Muche, R., Nikolaus, T., & Becker, C. (2003). Measuring power during the sit-to-stand transfer. European Journal of Applied Physiology, 89(5), 466-470. doi:10.1007/s00421-003-0837-zAnsai, J. H., de Andrade, L. P., Rossi, P. G., Nakagawa, T. H., Vale, F. A. C., & Rebelatto, J. R. (2019). Differences in Timed Up and Go Subtasks Between Older People With Mild Cognitive Impairment and Mild Alzheimer’s Disease. Motor Control, 23(1), 1-12. doi:10.1123/mc.2017-0015Beauchet, O., Annweiler, C., Callisaya, M. L., De Cock, A.-M., Helbostad, J. L., Kressig, R. W., … Allali, G. (2016). Poor Gait Performance and Prediction of Dementia: Results From a Meta-Analysis. Journal of the American Medical Directors Association, 17(6), 482-490. doi:10.1016/j.jamda.2015.12.092Delval, A., Tard, C., & Defebvre, L. (2014). Why we should study gait initiation in Parkinson’s disease. Neurophysiologie Clinique/Clinical Neurophysiology, 44(1), 69-76. doi:10.1016/j.neucli.2013.10.127Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420-428. doi:10.1037/0033-2909.86.2.420Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological Assessment, 6(4), 284-290. doi:10.1037/1040-3590.6.4.284Oliveira de Carvalho, A., Filho, A. S. S., Murillo-Rodriguez, E., Rocha, N. B., Carta, M. G., & Machado, S. (2018). Physical Exercise For Parkinson’s Disease: Clinical And Experimental Evidence. Clinical Practice & Epidemiology in Mental Health, 14(1), 89-98. doi:10.2174/1745017901814010089Tomlinson, C. L., Patel, S., Meek, C., Herd, C. P., Clarke, C. E., Stowe, R., … Ives, N. (2013). Physiotherapy versus placebo or no intervention in Parkinson’s disease. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.cd002817.pub4Shen, X., Wong-Yu, I. S. K., & Mak, M. K. Y. (2015). Effects of Exercise on Falls, Balance, and Gait Ability in Parkinson’s Disease. Neurorehabilitation and Neural Repair, 30(6), 512-527. doi:10.1177/1545968315613447Post, B., Muslimovic, D., van Geloven, N., Speelman, J. D., Schmand, B., & de Haan, R. J. (2011). Progression and prognostic factors of motor impairment, disability and quality of life in newly diagnosed Parkinson’s disease. Movement Disorders, 26(3), 449-456. doi:10.1002/mds.23467Leddy, A. L., Crowner, B. E., & Earhart, G. M. (2011). Functional Gait Assessment and Balance Evaluation System Test: Reliability, Validity, Sensitivity, and Specificity for Identifying Individuals With Parkinson Disease Who Fall. Physical Therapy, 91(1), 102-113. doi:10.2522/ptj.20100113Park, J.-H., Kang, Y.-J., & Horak, F. B. (2015). What Is Wrong with Balance in Parkinson’s Disease? Journal of Movement Disorders, 8(3), 109-114. doi:10.14802/jmd.15018Frenklach, A., Louie, S., Koop, M. M., & Bronte-Stewart, H. (2008). Excessive postural sway and the risk of falls at different stages of Parkinson’s disease. Movement Disorders, 24(3), 377-385. doi:10.1002/mds.22358Doná, F., Aquino, C. C., Gazzola, J. M., Borges, V., Silva, S. M. C. A., Ganança, F. F., … Ferraz, H. B. (2016). Changes in postural control in patients with Parkinson’s disease: a posturographic study. Physiotherapy, 102(3), 272-279. doi:10.1016/j.physio.2015.08.009Takakusaki, K., Habaguchi, T., Ohtinata-Sugimoto, J., Saitoh, K., & Sakamoto, T. (2003). Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience, 119(1), 293-308. doi:10.1016/s0306-4522(03)00095-2Błaszczyk, J. W., Orawiec, R., Duda-Kłodowska, D., & Opala, G. (2007). Assessment of postural instability in patients with Parkinson’s disease. Experimental Brain Research, 183(1), 107-114. doi:10.1007/s00221-007-1024-yCavagna, G. A., & Margaria, R. (1966). Mechanics of walking. Journal of Applied Physiology, 21(1), 271-278. doi:10.1152/jappl.1966.21.1.271Nguyen, H., Lebel, K., Boissy, P., Bogard, S., Goubault, E., & Duval, C. (2017). Auto detection and segmentation of daily living activities during a Timed Up and Go task in people with Parkinson’s disease using multiple inertial sensors. Journal of NeuroEngineering and Rehabilitation, 14(1). doi:10.1186/s12984-017-0241-2Hahn, M. E., & Chou, L.-S. (2003). Can motion of individual body segments identify dynamic instability in the elderly? Clinical Biomechanics, 18(8), 737-744. doi:10.1016/s0268-0033(03)00139-6Donelan, J. M., Shipman, D. W., Kram, R., & Kuo, A. D. (2004). Mechanical and metabolic requirements for active lateral stabilization in human walking. Journal of Biomechanics, 37(6), 827-835. doi:10.1016/j.jbiomech.2003.06.002Howell, D. R., Osternig, L. R., & Chou, L.-S. (2013). Dual-Task Effect on Gait Balance Control in Adolescents With Concussion. Archives of Physical Medicine and Rehabilitation, 94(8), 1513-1520. doi:10.1016/j.apmr.2013.04.015Akram, S., Frank, J. S., & Jog, M. (2013). Parkinson’s Disease and Segmental Coordination during Turning: I. Standing Turns. Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, 40(4), 512-519. doi:10.1017/s0317167100014591Verheyden, G., Willems, A.-M., Ooms, L., & Nieuwboer, A. (2007). Validity of the Trunk Impairment Scale as a Measure of Trunk Performance in People With Parkinson’s Disease. Archives of Physical Medicine and Rehabilitation, 88(10), 1304-1308. doi:10.1016/j.apmr.2007.06.772Mak, M. K. Y., & Hui-Chan, C. W. Y. (2005). The speed of sit-to-stand can be modulated in Parkinson’s disease. Clinical Neurophysiology, 116(4), 780-789. doi:10.1016/j.clinph.2004.12.017Inkster, L. M., & Eng, J. J. (2004). Postural control during a sit-to-stand task in individuals with mild Parkinson’s disease. Experimental Brain Research, 154(1), 33-38. doi:10.1007/s00221-003-1629-8Mak, M. K. Y., Levin, O., Mizrahi, J., & Hui-Chan, C. W. Y. (2003). Joint torques during sit-to-stand in healthy subjects and people with Parkinson’s disease. Clinical Biomechanics, 18(3), 197-206. doi:10.1016/s0268-0033(02)00191-2Trujillo, J. P., Gerrits, N. J. H. M., Vriend, C., Berendse, H. W., van den Heuvel, O. A., & van der Werf, Y. D. (2015). Impaired planning in P arkinson’s disease is reflected by reduced brain activation and connectivity. Human Brain Mapping, 36(9), 3703-3715. doi:10.1002/hbm.22873Nocera, J. R., Stegemöller, E. L., Malaty, I. A., Okun, M. S., Marsiske, M., & Hass, C. J. (2013). Using the Timed Up & Go Test in a Clinical Setting to Predict Falling in Parkinson’s Disease. Archives of Physical Medicine and Rehabilitation, 94(7), 1300-1305. doi:10.1016/j.apmr.2013.02.020Byl, N., R, H., R, R., & D, B. (2018). Is the timed up and go (TUG) sensitive to differentiating patients with mild to moderate PD compared to age matched controls: a descriptive pilot study. International Physical Medicine & Rehabilitation Journal, 3(1). doi:10.15406/ipmrj.2018.03.00094Barry, E., Galvin, R., Keogh, C., Horgan, F., & Fahey, T. (2014). Is the Timed Up and Go test a useful predictor of risk of falls in community dwelling older adults: a systematic review and meta- analysis. BMC Geriatrics, 14(1). doi:10.1186/1471-2318-14-14Cohen, R. G., Nutt, J. G., & Horak, F. B. (2017). Recovery from Multiple APAs Delays Gait Initiation in Parkinson’s Disease. Frontiers in Human Neuroscience, 11. doi:10.3389/fnhum.2017.00060Bloem, B. R., Hausdorff, J. M., Visser, J. E., & Giladi, N. (2004). Falls and freezing of gait in Parkinson’s disease: A review of two interconnected, episodic phenomena. Movement Disorders, 19(8), 871-884. doi:10.1002/mds.2011

    Survival Time after Surgical Debulking and Temozolomide Adjuvant Chemotherapy in Canine Intracranial Gliomas

    Get PDF
    Intracranial gliomas are associated with a poor prognosis, and the most appropriate treatment is yet to be defined. The objectives of this retrospective study are to report the time to progression and survival times of a group of dogs with histologically confirmed intracranial gliomas treated with surgical debulking and adjuvant temozolomide chemotherapy. All cases treated in a single referral veterinary hospital from 2014 to 2021 were reviewed. Inclusion criteria comprised a histopathological diagnosis of intracranial glioma, adjunctive chemotherapy, and follow-up until death. Cases were excluded if the owner declined chemotherapy or there was insufficient follow-up information in the clinical records. Fourteen client-owned dogs were included with a median time to progression (MTP) of 156 days (95% CI 133-320 days) and median survival time (MST) of 240 days (95% CI 149-465 days). Temozolomide was the first-line adjuvant chemotherapy but changed to another chemotherapy agent (lomustine, toceranib phosphate, or melphalan) when tumour relapse was either suspected by clinical signs or confirmed by advanced imaging. Of the fourteen dogs, three underwent two surgical resections and one, three surgeries. Survival times (ST) were 241, 428, and 468 days for three dogs treated twice surgically and 780 days for the dog treated surgically three times. Survival times for dogs operated once was 181 days. One case was euthanized after developing aspiration pneumonia, and all other cases after progression of clinical signs due to suspected or confirmed tumour relapse. In conclusion, the results of this study suggest that debulking surgery and adjuvant chemotherapy are well-tolerated options in dogs with intracranial gliomas in which surgery is a possibility and should be considered a potential treatment option. Repeated surgery may be considered for selected cases

    On the Corrections to Dashen's Theorem

    Full text link
    The electromagnetic corrections to the masses of the pseudoscalar mesons π\pi and KK are considered. We calculate in chiral perturbation theory the contributions which arise from resonances within a photon loop at order O(e2mq)O(e^2 m_q). Within this approach we find rather moderate deviations to Dashen's theorem.Comment: 14 pages, sligthly enlarged version; a numerical error is corrected and the embedding of the figures is improved. The complete paper, including figures, is also available via anonymous ftp at ftp://www-ttp.physik.uni-karlsruhe.de/ , or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints/; to be published in Phys.Rev.

    Adrenalectomía laparoscópica por metástasis metácrona. Experiencia en 12 casos

    Get PDF
    To assess the peroperative and oncological results of laparoscopic adrenalectomy for an isolated metastasis. MATERIAL AND METHODS: A retrospective, descriptive study was conducted of 12 laparoscopic adrenalectomies performed for metastases out of a total of 40 adrenalectomies performed from May 1998 to April 2009. The primary tumor was pulmonary in 7 patients, renal in 3, and colonic in 2. Demographic data collected included median age, operating time, blood loss, complications, tumor size, and length of hospital stay. The Kaplan-Meier method was used to analyze survival. RESULTS: Operating time was 150 min (range, 90-206). Peroperative bleeding was 60 ml (range, 15-150). Peroperative complications occurred in 3% of patients. Tumor size was 4.5 cm (range, 1.3-8.5). No positive margins were seen in the resected specimens. Hospital stay was 3 days (range 3-5). Actuarial survival was 55.6% at 23 months (range, 2-38) with mean and median follow-up times of 20.9 and 23 months. CONCLUSIONS: In selected patients, laparoscopic adrenalectomy for metastasis is a safe procedure with oncological results superimposable to those of open surgery

    Nefrectomía parcial laparoscópica. Análisis de los primeros 30 casos de nuestra serie y revisión de la literatura

    Get PDF
    Objective: Our goal is to analyze the surgical and clinicopathological results of our first 30 laparoscopic partial nephrectomies (LPN) performed consecutively and correlate the results with the literature. Material and methods: This is a cases series, with 30 patients (20 men and 10 women) operated between 2006 and 2008. We assessed the clinicopathological factors and complications. The mean and median follow-up was 25 and 5 months. Results: Resected tumors had an average size of 2.4 cm. 60% of the tumors were malignant. The pathological stage was pT1 in 100% of cases (47% grade I, 53% Fuhrman grade II). Surgical margins were positive in 3 cases, switching to open surgery. Intraoperative bleeding was 74.66 cc (35.7±SD) and 70 cc of mean and median. The mean operative time was 214.4min (±69) and ischemia time of 31.3min (±13.8). Conclusions: Our results are similar to those reported in the literature, except for positive margins and conversion attributable to the learning curve

    Association of crossed renal ectopia and aortic aneurism. Case report

    Get PDF
    OBJECTIVE: Renal malformations are rare entities and rarely have clinical consequences. Crossed renal ectopia has an incidence of 1/2.000 autopsies. The association with aortic aneurysm is even more exceptional. METHODS: We present our case and perform a bibliographic review. RESULTS: To date and in our knowledge , seven cases of crossed renal ectopia associated with aortic aneurysm were described on the literature. This malformation makes the treatment of the aneurysm more complex. The possibility of renal function decrease caused by injuries to the renal arteries during the surgical procedure is always present. Because of this risk of injury of the kidney during surgery preoperative evaluation of the vascularization must include image technologies as the MRI, CT-angiography or conventional arteriography. During the aortic intervention vascular conservation must be performed and it is necessary to minimize the time of renal ischemia. CONCLUSIONS: The association of crossed renal ectopia and aortic aneurysm is a rare event. The surgical intervention of the aorta does not have to necessarily originate a loss of renal function. Anyway the worsening of the renal clearance must be foreseen

    ÂżExiste un intervalo de tiempo de isquemia frĂ­a seguro para el injerto renal?

    Get PDF
    Objective: It is aimed to characterize the true relationship of the cold ischemia time (CIT) with graft survival and with the principal post-transplantation events.aterial and methods: We analyzed 378 kidney transplants, studying the relationship of the CIT with graft survival using a univariate analysis according to the COX model and seeking the optimum cutoff according to the Kaplan-Meier method and log-rank test. The relationship between CIT and the principal events of the post-transplant was studied using the binary logistic regression. Results: The mean follow-up of all the group was 77.8 months (± 51 SD) and the mean CIT was 14.8 hours (± 5.1 SD). The univariate analysis revealed that the CIT was not related with the graft survival as a continuous variable (OR = 1.04; 95% CI: 0.9-1.08; p > 0.05). On establishing the cutoff at 18 hours, we found differences in the actuarial survival. Survival at 5 years was 91% with CIT 18 h. Each hour of cold ischemia increased risk of delay in the graft function by 10% (OR = 1.1; 95% CI: 1.05-1.15; p < 0.001) and also conditioned a greater incidence of acute rejection (41.5% vs. 55.3%; p = 0.02) and less time to the first rejection episode (72.6 days ± 137 vs. 272.2 days ± 614.8; p = 0.023) after 18 hours. The CIT did not seem to be related (p < 0.05) with the rest of the post-transplantation events, such as surgical complications or hospital admissions. Conclusions: In our experience, cold ischemia under 18 hours does not seem to negatively affect graft survival
    • …
    corecore