9 research outputs found
Hybrid organic-inorganic polariton laser
Organic materials exhibit exceptional room temperature light emitting characteristics and enormous exciton oscillator strength, however, their low charge carrier mobility prevent their use in high-performance applications such as electrically pumped lasers. In this context, ultralow threshold polariton lasers, whose operation relies on Bose-Einstein condensation of polaritons - part-light part-matter quasiparticles, are highly advantageous since the requirement for high carrier injection no longer holds. Polariton lasers have been successfully implemented using inorganic materials owing to their excellent electrical properties, however, in most cases their relatively small exciton binding energies limit their operation temperature. It has been suggested that combining organic and inorganic semiconductors in a hybrid microcavity, exploiting resonant interactions between these materials would permit to dramatically enhance optical nonlinearities and operation temperature. Here, we obtain cavity mediated hybridization of GaAs and J-aggregate excitons in the strong coupling regime under electrical injection of carriers as well as polariton lasing up to 200 K under non-resonant optical pumping. Our demonstration paves the way towards realization of hybrid organic-inorganic microcavities which utilise the organic component for sustaining high temperature polariton condensation and efficient electrical injection through inorganic structure
Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks in Linear Programs
We consider the problem of extracting a maximum-size reflected network in a
linear program. This problem has been studied before and a state-of-the-art SGA
heuristic with two variations have been proposed.
In this paper we apply a new approach to evaluate the quality of SGA\@. In
particular, we solve majority of the instances in the testbed to optimality
using a new fixed-parameter algorithm, i.e., an algorithm whose runtime is
polynomial in the input size but exponential in terms of an additional
parameter associated with the given problem.
This analysis allows us to conclude that the the existing SGA heuristic, in
fact, produces solutions of a very high quality and often reaches the optimal
objective values. However, SGA contain two components which leave some space
for improvement: building of a spanning tree and searching for an independent
set in a graph. In the hope of obtaining even better heuristic, we tried to
replace both of these components with some equivalent algorithms.
We tried to use a fixed-parameter algorithm instead of a greedy one for
searching of an independent set. But even the exact solution of this subproblem
improved the whole heuristic insignificantly. Hence, the crucial part of SGA is
building of a spanning tree. We tried three different algorithms, and it
appears that the Depth-First search is clearly superior to the other ones in
building of the spanning tree for SGA.
Thereby, by application of fixed-parameter algorithms, we managed to check
that the existing SGA heuristic is of a high quality and selected the component
which required an improvement. This allowed us to intensify the research in a
proper direction which yielded a superior variation of SGA
An exciton-polariton bolometer for terahertz radiation detection
We experimentally investigate the feasibility of a bolometric device based on exciton-polaritons. Initial measurements presented in this work show that heating - via thermal expansion and bandgap renormalization - modifies the exciton-polariton propagation wavevector making exciton-polaritons propagation remarkably sensitive to thermal variations. By theoretical simulations we predict that using a single layer graphene absorbing layer, a THz bolometric sensor can be realized by a simple exciton-polariton ring interferometer device. The predicted sensitivity is comparable to presently existing THz bolometric devices with the convenience of being a device that inherently produces an optical signal output.</p
Hybrid organic-inorganic polariton laser
Organic materials exhibit exceptional room temperature light emitting characteristics and enormous exciton oscillator strength, however, their low charge carrier mobility prevent their use in high-performance applications such as electrically pumped lasers. In this context, ultralow threshold polariton lasers, whose operation relies on Bose-Einstein condensation of polaritons – part-light part-matter quasiparticles, are highly advantageous since the requirement for high carrier injection no longer holds. Polariton lasers have been successfully implemented using inorganic materials owing to their excellent electrical properties, however, in most cases their relatively small exciton binding energies limit their operation temperature. It has been suggested that combining organic and inorganic semiconductors in a hybrid microcavity, exploiting resonant interactions between these materials would permit to dramatically enhance optical nonlinearities and operation temperature. Here, we obtain cavity mediated hybridization of GaAs and J-aggregate excitons in the strong coupling regime under electrical injection of carriers as well as polariton lasing up to 200 K under non-resonant optical pumping. Our demonstration paves the way towards realization of hybrid organic-inorganic microcavities which utilise the organic component for sustaining high temperature polariton condensation and efficient electrical injection through inorganic structure
Axion Searches in the Past, at Present, and in the Near Future.
Theoretical axion models state that axions are very weakly interacting
particles. In order to experimentally detect them, the use of colorful and
inspired techniques becomes mandatory. There is a wide variety of experimental
approaches that were developed during the last 30 years, most of them make use
of the Primakoff effect, by which axions convert into photons in the presence
of an electromagnetic field. We review the experimental techniques used to
search for axions and will give an outlook on experiments planned for the near
future.Comment: 38 pages, 26 figures and images, to appear in the Lecture Notes in
Physics volume on Axions (Springer Verlag
Flavour Physics of Leptons and Dipole Moments.
This chapter of the report of the ``Flavour in the era of the LHC'' Workshop
discusses the theoretical, phenomenological and experimental issues related to
flavour phenomena in the charged lepton sector and in flavour-conserving
CP-violating processes. We review the current experimental limits and the main
theoretical models for the flavour structure of fundamental particles. We
analyze the phenomenological consequences of the available data, setting
constraints on explicit models beyond the Standard Model, presenting benchmarks
for the discovery potential of forthcoming measurements both at the LHC and at
low energy, and exploring options for possible future experiments.Comment: Report of Working Group 3 of the CERN Workshop ``Flavour in the era
of the LHC'', Geneva, Switzerland, November 2005 -- March 200