9 research outputs found

    Hybrid organic-inorganic polariton laser

    Get PDF
    Organic materials exhibit exceptional room temperature light emitting characteristics and enormous exciton oscillator strength, however, their low charge carrier mobility prevent their use in high-performance applications such as electrically pumped lasers. In this context, ultralow threshold polariton lasers, whose operation relies on Bose-Einstein condensation of polaritons - part-light part-matter quasiparticles, are highly advantageous since the requirement for high carrier injection no longer holds. Polariton lasers have been successfully implemented using inorganic materials owing to their excellent electrical properties, however, in most cases their relatively small exciton binding energies limit their operation temperature. It has been suggested that combining organic and inorganic semiconductors in a hybrid microcavity, exploiting resonant interactions between these materials would permit to dramatically enhance optical nonlinearities and operation temperature. Here, we obtain cavity mediated hybridization of GaAs and J-aggregate excitons in the strong coupling regime under electrical injection of carriers as well as polariton lasing up to 200 K under non-resonant optical pumping. Our demonstration paves the way towards realization of hybrid organic-inorganic microcavities which utilise the organic component for sustaining high temperature polariton condensation and efficient electrical injection through inorganic structure

    Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks in Linear Programs

    Full text link
    We consider the problem of extracting a maximum-size reflected network in a linear program. This problem has been studied before and a state-of-the-art SGA heuristic with two variations have been proposed. In this paper we apply a new approach to evaluate the quality of SGA\@. In particular, we solve majority of the instances in the testbed to optimality using a new fixed-parameter algorithm, i.e., an algorithm whose runtime is polynomial in the input size but exponential in terms of an additional parameter associated with the given problem. This analysis allows us to conclude that the the existing SGA heuristic, in fact, produces solutions of a very high quality and often reaches the optimal objective values. However, SGA contain two components which leave some space for improvement: building of a spanning tree and searching for an independent set in a graph. In the hope of obtaining even better heuristic, we tried to replace both of these components with some equivalent algorithms. We tried to use a fixed-parameter algorithm instead of a greedy one for searching of an independent set. But even the exact solution of this subproblem improved the whole heuristic insignificantly. Hence, the crucial part of SGA is building of a spanning tree. We tried three different algorithms, and it appears that the Depth-First search is clearly superior to the other ones in building of the spanning tree for SGA. Thereby, by application of fixed-parameter algorithms, we managed to check that the existing SGA heuristic is of a high quality and selected the component which required an improvement. This allowed us to intensify the research in a proper direction which yielded a superior variation of SGA

    An exciton-polariton bolometer for terahertz radiation detection

    No full text
    We experimentally investigate the feasibility of a bolometric device based on exciton-polaritons. Initial measurements presented in this work show that heating - via thermal expansion and bandgap renormalization - modifies the exciton-polariton propagation wavevector making exciton-polaritons propagation remarkably sensitive to thermal variations. By theoretical simulations we predict that using a single layer graphene absorbing layer, a THz bolometric sensor can be realized by a simple exciton-polariton ring interferometer device. The predicted sensitivity is comparable to presently existing THz bolometric devices with the convenience of being a device that inherently produces an optical signal output.</p

    Hybrid organic-inorganic polariton laser

    No full text
    Organic materials exhibit exceptional room temperature light emitting characteristics and enormous exciton oscillator strength, however, their low charge carrier mobility prevent their use in high-performance applications such as electrically pumped lasers. In this context, ultralow threshold polariton lasers, whose operation relies on Bose-Einstein condensation of polaritons – part-light part-matter quasiparticles, are highly advantageous since the requirement for high carrier injection no longer holds. Polariton lasers have been successfully implemented using inorganic materials owing to their excellent electrical properties, however, in most cases their relatively small exciton binding energies limit their operation temperature. It has been suggested that combining organic and inorganic semiconductors in a hybrid microcavity, exploiting resonant interactions between these materials would permit to dramatically enhance optical nonlinearities and operation temperature. Here, we obtain cavity mediated hybridization of GaAs and J-aggregate excitons in the strong coupling regime under electrical injection of carriers as well as polariton lasing up to 200 K under non-resonant optical pumping. Our demonstration paves the way towards realization of hybrid organic-inorganic microcavities which utilise the organic component for sustaining high temperature polariton condensation and efficient electrical injection through inorganic structure

    Axion Searches in the Past, at Present, and in the Near Future.

    No full text
    Theoretical axion models state that axions are very weakly interacting particles. In order to experimentally detect them, the use of colorful and inspired techniques becomes mandatory. There is a wide variety of experimental approaches that were developed during the last 30 years, most of them make use of the Primakoff effect, by which axions convert into photons in the presence of an electromagnetic field. We review the experimental techniques used to search for axions and will give an outlook on experiments planned for the near future.Comment: 38 pages, 26 figures and images, to appear in the Lecture Notes in Physics volume on Axions (Springer Verlag

    Flavour Physics of Leptons and Dipole Moments.

    Get PDF
    This chapter of the report of the ``Flavour in the era of the LHC'' Workshop discusses the theoretical, phenomenological and experimental issues related to flavour phenomena in the charged lepton sector and in flavour-conserving CP-violating processes. We review the current experimental limits and the main theoretical models for the flavour structure of fundamental particles. We analyze the phenomenological consequences of the available data, setting constraints on explicit models beyond the Standard Model, presenting benchmarks for the discovery potential of forthcoming measurements both at the LHC and at low energy, and exploring options for possible future experiments.Comment: Report of Working Group 3 of the CERN Workshop ``Flavour in the era of the LHC'', Geneva, Switzerland, November 2005 -- March 200
    corecore