6 research outputs found

    Effect of the influenza A (H1N1) live attenuated intranasal vaccine on nitric oxide (FENO) and other volatiles in exhaled breath

    Get PDF
    For the 2009 influenza A (H1N1) pandemic, vaccination and infection control were the main modes of prevention. A live attenuated H1N1 vaccine mimics natural infection and works by evoking a host immune response, but currently there are no easy methods to measure such a response. To determine if an immune response could be measured in exhaled breath, exhaled nitric oxide (FE NO) and other exhaled breath volatiles using selected ion flow tube mass spectrometry (SIFT-MS) were measured before and daily for seven days after administering the H1N1 2009 monovalent live intranasal vaccine (FluMist®, MedImmune LLC) in nine healthy healthcare workers (age 35 ± 7 years; five females). On day 3 after H1N1 FluMist® administration there were increases in FENO (MEAN±SEM: day 0 15 ± 3 ppb, day 3 19 ± 3 ppb; p < 0.001) and breath isoprene (MEAN±SEM: day 0 59 ± 15 ppb, day 3 99 ± 17 ppb; p = 0.02). MS analysis identified the greatest number of changes in exhaled breath on day 3 with 137 product ion masses that changed from baseline. The exhaled breath changes on day 3 after H1N1 vaccination may reflect the underlying host immune response. However, further work to elucidate the sources of the exhaled breath changes is necessary

    Within/between population crosses reveal genetic basis for siring success in Silene latifolia (Caryophyllaceae).

    Full text link
    Divergence at reproductive traits can generate barriers among populations, and may result from several mechanisms, including drift, local selection and co-adaptation between the sexes. Intersexual co-adaptation can arise through sexually antagonistic co-evolution, a timely hypothesis addressed in animals but, to our knowledge, not yet in flowering plants. We investigated whether male and female population of origin affected pollen competition success, offspring fitness and sex ratio in crosses within/between six genetically differentiated populations of the white campion, Silene latifolia. Each female was crossed with pollen from one focus male from the same population, and pollen from two focus males from two distinct populations, both as single-donor and two-donor crosses against a fixed tester male with a 2-h interpollination interval (n = 288 crosses). We analysed paternity with microsatellite DNA. Male populations of origin significantly differed for siring success and in vitro pollen germination rates. In vitro pollen germination rate was heritable. Siring success also depended on sex ratio in the female family of origin, but only in between-population crosses. In some female populations, two-donor crosses produced less female-biased sex ratios compared with single-donor crosses, yet in other female populations the reverse was true. Offspring sex ratio varied with donor number, depending on the female population. Within/between population crosses did not differ significantly in seed set or offspring fitness, nor were siring success and offspring fitness significantly correlated. Altogether this suggests reproductive divergence for traits affecting pollen competition in S. latifolia

    Biological Oils as Precursors to Novel Polymeric Materials

    No full text

    Bibliography

    No full text
    corecore