17 research outputs found

    FunnyBase: a systems level functional annotation of Fundulus ESTs for the analysis of gene expression

    Get PDF
    BACKGROUND: While studies of non-model organisms are critical for many research areas, such as evolution, development, and environmental biology, they present particular challenges for both experimental and computational genomic level research. Resources such as mass-produced microarrays and the computational tools linking these data to functional annotation at the system and pathway level are rarely available for non-model species. This type of "systems-level" analysis is critical to the understanding of patterns of gene expression that underlie biological processes. RESULTS: We describe a bioinformatics pipeline known as FunnyBase that has been used to store, annotate, and analyze 40,363 expressed sequence tags (ESTs) from the heart and liver of the fish, Fundulus heteroclitus. Primary annotations based on sequence similarity are linked to networks of systematic annotation in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and can be queried and computationally utilized in downstream analyses. Steps are taken to ensure that the annotation is self-consistent and that the structure of GO is used to identify higher level functions that may not be annotated directly. An integrated framework for cDNA library production, sequencing, quality control, expression data generation, and systems-level analysis is presented and utilized. In a case study, a set of genes, that had statistically significant regression between gene expression levels and environmental temperature along the Atlantic Coast, shows a statistically significant (P < 0.001) enrichment in genes associated with amine metabolism. CONCLUSION: The methods described have application for functional genomics studies, particularly among non-model organisms. The web interface for FunnyBase can be accessed at . Data and source code are available by request at [email protected]

    CrossSearch, a User-friendly Search Engine for Detecting Chemically Cross-linked Peptides in Conjugated Proteins*S⃞

    No full text
    Chemical cross-linking and high resolution MS have been integrated successfully to capture protein interactions and provide low resolution structural data for proteins that are refractive to analyses by NMR or crystallography. Despite the versatility of these combined techniques, the array of products that is generated from the cross-linking and proteolytic digestion of proteins is immense and generally requires the use of labeling strategies and/or data base search algorithms to distinguish actual cross-linked peptides from the many side products of cross-linking. Most strategies reported to date have focused on the analysis of small cross-linked protein complexes (<60 kDa) because the number of potential forms of covalently modified peptides increases dramatically with the number of peptides generated from the digestion of such complexes. We report herein the development of a user-friendly search engine, CrossSearch, that provides the foundation for an overarching strategy to detect cross-linked peptides from the digests of large (≥170-kDa) cross-linked proteins, i.e. conjugates. Our strategy combines the use of a low excess of cross-linker, data base searching, and Fourier transform ion cyclotron resonance MS to experimentally minimize and theoretically cull the side products of cross-linking. Using this strategy, the (αβγδ)4 phosphorylase kinase model complex was cross-linked to form with high specificity a 170-kDa βγ conjugate in which we identified residues involved in the intramolecular cross-linking of the 125-kDa β subunit between its regulatory N terminus and its C terminus. This finding provides an explanation for previously published homodimeric two-hybrid interactions of the β subunit and suggests a dynamic structural role for the regulatory N terminus of that subunit. The results offer proof of concept for the CrossSearch strategy for analyzing conjugates and are the first to reveal a tertiary structural element of either homologous α or β regulatory subunit of phosphorylase kinase

    RD-Connect: An Integrated Platform Connecting Databases, Registries, Biobanks and Clinical Bioinformatics for Rare Disease Research

    No full text
    International audienceResearch into rare diseases is typically fragmented by data type and disease. Individual efforts often have poor interoperability and do not systematically connect data across clinical phenotype, genomic data, biomaterial availability, and research/trial data sets. Such data must be linked at both an individual-patient and whole-cohort level to enable researchers to gain a complete view of their disease and patient population of interest. Data access and authorization procedures are required to allow researchers in multiple institutions to securely compare results and gain new insights. Funded by the European Union's Seventh Framework Programme under the International Rare Diseases Research Consortium (IRDiRC), RD-Connect is a global infrastructure project initiated in November 2012 that links genomic data with registries, biobanks, and clinical bioinformatics tools to produce a central research resource for rare diseases

    Image_2_HLA-associated outcomes in peanut oral immunotherapy trials identify mechanistic and clinical determinants of therapeutic success.pdf

    No full text
    RationalePrevious studies identified an interaction between HLA and oral peanut exposure. HLA-DQA1*01:02 had a protective role with the induction of Ara h 2 epitope-specific IgG4 associated with peanut consumption during the LEAP clinical trial for prevention of peanut allergy, while it was a risk allele for peanut allergy in the peanut avoidance group. We have now evaluated this gene-environment interaction in two subsequent peanut oral immunotherapy (OIT) trials - IMPACT and POISED - to better understand the potential for the HLA-DQA1*01:02 allele as an indicator of higher likelihood of desensitization, sustained unresponsiveness, and peanut allergy remission.MethodsWe determined HLA-DQA1*01:02 carrier status using genome sequencing from POISED (N=118, age: 7-55yr) and IMPACT (N=126, age: 12-ResultsWhile not quite statistically significant, a higher proportion of HLA-DQA1*01:02 carriers receiving OIT in IMPACT were desensitized (93%) compared to non-carriers (78%); odds ratio (OR)=5.74 (p=0.06). In this sample we also observed that a higher proportion of carriers achieved remission (35%) compared to non-carriers (22%); OR=1.26 (p=0.80). In POISED, carriers more frequently attained continued desensitization (80% versus 61% among non-carriers; OR=1.28, p=0.86) and achieved SU (52% versus 31%; OR=2.32, p=0.19). psIgG4 associations with HLA-DQA1*01:02 in the OIT arm of IMPACT which included younger study subjects recapitulated patterns noted in LEAP, but no associations of note were observed in the older POISED study subjects.ConclusionsFindings across three clinical trials show a pattern of a gene environment interaction between HLA and oral peanut exposure. Age, and prior sensitization contribute additional determinants of outcomes, consistent with a mechanism of restricted antigen recognition fundamental to driving protective immune responses to OIT.</p

    Image_1_HLA-associated outcomes in peanut oral immunotherapy trials identify mechanistic and clinical determinants of therapeutic success.pdf

    No full text
    RationalePrevious studies identified an interaction between HLA and oral peanut exposure. HLA-DQA1*01:02 had a protective role with the induction of Ara h 2 epitope-specific IgG4 associated with peanut consumption during the LEAP clinical trial for prevention of peanut allergy, while it was a risk allele for peanut allergy in the peanut avoidance group. We have now evaluated this gene-environment interaction in two subsequent peanut oral immunotherapy (OIT) trials - IMPACT and POISED - to better understand the potential for the HLA-DQA1*01:02 allele as an indicator of higher likelihood of desensitization, sustained unresponsiveness, and peanut allergy remission.MethodsWe determined HLA-DQA1*01:02 carrier status using genome sequencing from POISED (N=118, age: 7-55yr) and IMPACT (N=126, age: 12-ResultsWhile not quite statistically significant, a higher proportion of HLA-DQA1*01:02 carriers receiving OIT in IMPACT were desensitized (93%) compared to non-carriers (78%); odds ratio (OR)=5.74 (p=0.06). In this sample we also observed that a higher proportion of carriers achieved remission (35%) compared to non-carriers (22%); OR=1.26 (p=0.80). In POISED, carriers more frequently attained continued desensitization (80% versus 61% among non-carriers; OR=1.28, p=0.86) and achieved SU (52% versus 31%; OR=2.32, p=0.19). psIgG4 associations with HLA-DQA1*01:02 in the OIT arm of IMPACT which included younger study subjects recapitulated patterns noted in LEAP, but no associations of note were observed in the older POISED study subjects.ConclusionsFindings across three clinical trials show a pattern of a gene environment interaction between HLA and oral peanut exposure. Age, and prior sensitization contribute additional determinants of outcomes, consistent with a mechanism of restricted antigen recognition fundamental to driving protective immune responses to OIT.</p
    corecore