82 research outputs found
Structure et dynamique de systèmes unidimensionnels modèles (les nano-peapods de carbone)
Ce travail de thèse est consacré à l'étude sur une large gamme de températures d'un système unidimensionnel modèle, les nano-peapods de carbone. Ces composés sont constitués de fullerènes (C60, dans notre cas) insérés dans des nanotubes de carbone monofeuillets. Les diamètres des fullerènes et des tubes étant concordant, les fullerènes s'arrangent selon un réseau 1D.Dans le premier chapitre de ce manuscrit, nous décrivons la synthèse des peapods de carbone. Dans les deux chapitres suivants, nous décrivons les différents modèles et méthodes expérimentales qui nous permettent de déterminer l'évolution de la structure moyenne des chaînes de fullerènes, ainsi que la dynamique de rotation et de translation des molécules.Dans les trois derniers chapitres, nous décrivons l'évolution de la structure et de la dynamique des chaînes sur trois gammes de températures, que nous appelons hautes (500-1100 K), basses (0-200 K), et intermédiaires (200-500 K). Les résultats expérimentaux concernant deux types d'échantillons, les peapods monomères et les peapods polymères (dans lesquels les degrés de liberté de rotation sont restreints) sont confrontés à des modèles analytiques. Nous mettons en évidence trois comportements différents des chaînes dans ces trois gammes de température.This work is dedicated to the study of the structural and dynamical behavior of a model one-dimensional system over a wide temperature range: carbon nano-peapods. This compound is constituted of fullerenes (C60, in our case) inserted inside single-walled carbon nanotubes. The perfect match between the inner diameter of the tubes and the diameter of the fullerenes results in a chain organization of the C60 molecules.The synthesis of these peapods is described in the first part of this manuscript. The two next chapters are aimed to the description of the different experimental and simulation methods that are used to monitor the structural and dynamical behavior of the C60 molecules.In the three last chapters, we describe the behaviour of the C60 molecules over three temperature ranges, labeled high (500-1100 K), low (0-200 K), and intermediary (200-500 K) ranges. By comparing experimental results to analytical models for both monomer and polymer peapods (the rotational degree of freedom being hindered in the latter), we highlight three different behaviors of the molecules in these three ranges.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
X-ray diffraction as a tool for the determination of the structure of double-walled carbon nanotube batches
The average structure of double-walled carbon nanotube DWCNT samples can be determined by x-ray diffraction XRD. We present a formalism that allows XRD patterns of DWCNTs to be simulated and we give researchers the tools needed to perform these calculations themselves. Simulations of XRD patterns within this formalism are compared to experimental data obtained on two different DWCNT samples, produced by chemical vapor deposition or by peapod conversion i.e., high-temperature peapod annealing. For each sample, we are able to determine structural aspects such as the number of walls, the diameter distribution of inner and outer tubes, the intertube spacing, and the bundled structure
Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity.
International audienceABSTRACT: Given the increasing use of carbon nanotubes (CNT) in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role.We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT) specifically synthesized following a similar production process (aerosol-assisted CVD), and used a soft ultrasonic treatment in water to modify the length of one of them.We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects) and chemical (i.e. oxidation) modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized) compared to long (pristine) MWCNT.In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example
Structure in Nascent Carbon Nanotubes Revealed by Spatially Resolved Raman Spectroscopy
The understanding of carbon nanotubes (CNT) growth is crucial for the control of their production. In particular, the identification of structural changes of carbon possibly occurring near the catalyst particle in the very early stages of their formation is of high interest. In this study, samples of nascent CNT obtained during nucleation step and samples of vertically aligned CNT obtained during growth step are analysed by combined spatially resolved Raman spectroscopy and X-Ray diffraction measurements. Spatially resolved Raman spectroscopy reveals that iron-based phases and carbon phases are co-localised at the same position, and indicates that sp2 carbon nucleates preferentially on iron-based particles during this nucleation step. Depth scan Raman spectroscopy analysis, performed on nascent CNT, highlights that carbon structural organisation is significantly changing from defective graphene layers surrounding the iron-based particles at their base up to multi-walled nanotube structures in the upper part of iron-based particles
MOMAC: a SAXS/WAXS laboratory instrument dedicated to nanomaterials
International audienceThis article presents the technical characteristics of a newly built small-and wide-angle X-ray scattering (SAXS/WAXS) apparatus dedicated to structural characterization of a wide range of nanomaterials in the powder or dispersion form. The instrument is based on a high-flux rotating anode generator with a molybdenum target, enabling the assessment of highly absorbing samples containing heavy elements. The SAXS part is composed of a collimation system including a multilayer optic and scatterless slits, a motorized sample holder, a vacuum chamber, and a two-dimensional image-plate detector. All the control command is done through a TANGO interface. Normalization and data correction yield scattering patterns at the absolute scale automatically with a q range from 0.03 to 3.2 A ˚ À1. The WAXS part features a multilayer collimating optic and a two-dimensional image-plate detector with variable sample-to-detector distances. The accessible q range is 0.4–9 A ˚ À1 , ensuring a large overlap in q range between the two instruments. A few examples of applications are also presented, namely coupled SAXS/WAXS structure and symmetry determination of gold nanocrystals in solution and characterization of imogolite nanotubes and iron-filled carbon nanotube samples
Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes
We report structure-property correlations in single wall carbon nanotube (SWNT) fibers, among electrical, thermal and chemical parameters with respect to stretch-induced preferential SWNT alignment along the fiber axis. Purified HiPco tubes are dispersed with the aid of an anionic surfactant and coagulated in the co-flowing stream of an adsorbing polymer. The fibers are then dried, rewetted under tensile load and redried to improve the alignment. Complete removal of the polymer was assured by annealing in hydrogen at 1000oC. The degree of alignment was determined by x-ray scattering from individual fibers using a 2-dimensional detector. The half width at half maximum (HWHM) describing the axially symmetric distribution of SWNT axes decreases linearly from 27.5o in the initial extruded fiber to 14.5o after stretching by 80%. The electrical resistivity ρ at 300 K decreases overall by a factor ~4 with stretching, for both as-spun composite and polymer-free annealed fibers. However, the temperature dependence ρ(T) is markedly different for the two, implying different electron transport mechanisms with and without the polymer. Thermal conductivity also improves with increasing alignment, while the absolute values are limited by the disordered network of finite length tubes and bundles. Comparisons are made with results from similar fibers spun from oleum, and with magnetically aligned buckypapers
A liquid-crystalline hexagonal columnar phase in highly-dilute suspensions of imogolite nanotubes
International audienceLiquid crystals have found wide applications in many fields ranging from detergents to information displays and they are also increasingly being used in the 'bottom-up' self-assembly approach of material nano-structuration. Moreover, liquid-crystalline organizations are frequently observed by biologists. Here we show that one of the four major lyotropic liquid-crystal phases, the columnar one, is much more stable on dilution than reported so far in literature. Indeed, aqueous suspensions of imogolite nanotubes, at low ionic strength, display the columnar liquid-crystal phase at volume fractions as low as B0.2%. Consequently, due to its low visco-elasticity, this columnar phase is easily aligned in an alternating current electric field, in contrast with usual columnar liquid-crystal phases. These findings should have important implications for the statistical physics of the suspensions of charged rods and could also be exploited in materials science to prepare ordered nanocomposites and in biophysics to better understand solutions of rod-like biopolymers
Lessons learned developing a massive open online course in implementation research in infectious diseases of poverty in low- and middle-income countries
Daniel Reidpath - ORCID: 0000-0002-8796-0420 https://orcid.org/0000-0002-8796-0420This study uses a case study approach to examine the development of a massive open online course (MOOC) on intervention and implementation research in infectious diseases of poverty for learners in low- and middle-income countries (LMICs). Implementation research (IR) seeks to understand and address barriers to effective implementation of health interventions, strategies, and policies. In recent years, IR has attracted increased interest, and corresponding demand for training, however, current training opportunities are not easily accessible to learners in LMICs. In 2017, the MOOC was introduced to a diverse range of learners to enhance access to training materials and has been offered yearly since. Findings are based on the experiences of the MOOC working group which included developers and facilitators, and on interpretations of data such as forum discussion activity and Facebook posts. The use of material from local contexts and in local languages, and professional facilitation of discussion forums was identified by the working group to be key considerations in developing the MOOC. Other findings include the importance of using clear instructions and preparing discussion questions to stimulate learner engagement. These findings add to the limited knowledge of MOOCs developed for LMICs and are of value to others developing professional development MOOCs in LMIC health contexts.http://doi.org/10.5944/openpraxis.13.1.117213pubpub
Structural resolution of inorganic nanotubes with complex stoichiometry.
Determination of the atomic structure of inorganic single-walled nanotubes with complex stoichiometry remains elusive due to the too many atomic coordinates to be fitted with respect to X-ray diffractograms inherently exhibiting rather broad features. Here we introduce a methodology to reduce the number of fitted variables and enable resolution of the atomic structure for inorganic nanotubes with complex stoichiometry. We apply it to recently synthesized methylated aluminosilicate and aluminogermanate imogolite nanotubes of nominal composition (OH)3Al2O3Si(Ge)CH3. Fitting of X-ray scattering diagrams, supported by Density Functional Theory simulations, reveals an unexpected rolling mode for these systems. The transferability of the approach opens up for improved understanding of structure-property relationships of inorganic nanotubes to the benefit of fundamental and applicative research in these systems
- …