23 research outputs found

    Cyanomethylene-bis(phosphonate)-Based Lanthanide Complexes: Structural, Photophysical, and Magnetic Investigations

    Get PDF
    10 pagesInternational audienceThe syntheses, structural investigations, magnetic and photophysical properties of a series of 10 lanthanide mononuclear complexes, containing the heteroditopic ligand cyanomethylene-bis(5,5-dimethyl-2-oxo-1,3,2λ5-dioxa-phosphorinane) (L), are described. The crystallographic analyses indicate two structural types: in the first one, [LnIII(L)3(H2O)2]*H2O (Ln = La, Pr, Nd), the metal ions are eight-coordinated within a square antiprism geometry, while the second one, [LnIII(L)3(H2O)]*8H2O (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er), contains seven-coordinated LnIII ions within distorted monocapped trigonal prisms...

    Magnetic properties and spin dynamics of 3d-4f molecular complexes

    No full text
    We present the magnetic properties of three recently synthesized binuclear molecular complexes [NiNd], [NiGd] and [ZnGd] investigated by dc magnetization and proton nuclear magnetic resonance (NMR) measurements. The high-temperature magnetic properties are related to the independent paramagnetic behavior of the two magnetic metal ions within the binuclear entities both in [NiNd] and [NiGd]. On lowering the temperature, the formation of a magnetic dimer, with a low-spin ground state due to antiferromagnetic interaction (J/kB = -25 K) between Ni2+ and Nd3+, is found in the case of [NiNd], while in [NiGd] a ferromagnetic interaction (J/kB = 3.31 K) between the magnetic ions leads to a high-spin (S = 9/2) ground state. The temperature dependence of the proton nuclear spin lattice relaxation rate 1/T1 in [NiNd] is driven by the fluctuation of the hyperfine field at the nuclear site due to relaxation of the magnetization. At high temperature the independent Ni2+ and Nd3+ spins fluctuate fast while at low temperature we observe a slowing down of the fluctuation of the total magnetization of the dimer because of the insurgence of antiferromagnetic spin correlations. The relaxation mechanism in [NiNd] at low temperature is interpreted by a single, temperature dependent, correlation frequency wc\simT^3.5, which reflects the life time broadening of the exchange coupled spins via spin-phonon interaction. The proton NMR signal in [NiGd] could be detected just at room temperature, due to the shortening of relaxation times when T is decreased. The magnetic properties of [ZnGd] are the ones expected from a weakly interacting assembly of isolated moments except for anomalies in the susceptibility and NMR results below 15 K which currently cannot be explained
    corecore