2 research outputs found
Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo
Somatic Addition of Sex Combs Like 1 (ASXL1) mutations occur in 10-30% of patients with myeloid malignancies, most commonly in myelodysplastic syndromes (MDSs), and are associated with adverse outcome. Germline ASXL1 mutations occur in patients with Bohring-Opitz syndrome. Here, we show that constitutive loss of Asxl1 results in developmental abnormalities, including anophthalmia, microcephaly, cleft palates, and mandibular malformations. In contrast, hematopoietic-specific deletion of Asxl1 results in progressive, multilineage cytopenias and dysplasia in the context of increased numbers of hematopoietic stem/progenitor cells, characteristic features of human MDS. Serial transplantation of Asxl1-null hematopoietic cells results in a lethal myeloid disorder at a shorter latency than primary Asxl1 knockout (KO) mice. Asxl1 deletion reduces hematopoietic stem cell self-renewal, which is restored by concomitant deletion of Tet2, a gene commonly co-mutated with ASXL1 in MDS patients. Moreover, compound Asxl1/Tet2 deletion results in an MDS phenotype with hastened death compared with single-gene KO mice. Asxl1 loss results in a global reduction of H3K27 trimethylation and dysregulated expression of known regulators of hematopoiesis. RNA-Seq/ChIP-Seq analyses of Asxl1 in hematopoietic cells identify a subset of differentially expressed genes as direct targets of Asxl1. These findings underscore the importance of Asxl1 in Polycomb group function, development, and hematopoiesisclos
Recurrent Somatic TET2 Mutations in Normal Elderly Individuals With Clonal Hematopoiesis
Aging is characterized by clonal expansion of myeloid-biased hematopoietic stem cells and by an increased risk of myeloid malignancies. Exome sequencing of 3 elderly females with clonal hematopoiesis demonstrated by X-inactivation analysis identified somatic
TET2
mutations. Recurrence testing found
TET2
mutations in 10 out of 182 individuals with X-inactivation skewing.
TET2
mutations were specific to individuals with clonal hematopoiesis without hematologic malignancies and were associated with alterations in DNA methylation