14 research outputs found

    Protocol for the CUPIDO trials; multicenter randomized controlled trials to assess the value of combining prolapse surgery and incontinence surgery in patients with genital prolapse and evident stress incontinence (CUPIDO I) and in patients with genital prolapse and occult stress incontinence (CUPIDO II)

    Get PDF
    Background: About 40% of all patients with genital prolapse report stress-incontinence. In about half of the 60% patients that do not report stress-incontinence, occult urinary stress-incontinence can be detected. In these patients stress-incontinence is masked due to kinking or compression of the urethra by the prolapse. In case surgical correction is indicated there are two strategies to manage patients with combined prolapse and (occult) stress incontinence. This strategy is either (i) a combination of prolapse surgery and stress-incontinence surgery or (ii) to correct the prolapse first and evaluate afterwards whether additional stress-incontinence surgery is indicated. The advantage of combining prolapse and stress-incontinence surgery is that only few patients report stress-incontinence following such combination. However, this combination has been associated with an increased risk on complications, of which the development of obstructive micturition symptoms, overactive bladder symptoms and bladder retention are the most important ones. Furthermore, combining two procedures may be unnecessary as performing only prolapse surgery may cure stress-incontinence In the randomized CUPIDO trials both strategies are compared in patients with prolapse and evident stress incontinence (CUPIDO I trial) and in patients with prolapse and occult stress incontinence (CUPIDO II trial). Methods/Design: The CUPIDO trials are two multicenter randomized controlled trials in which women with stress urinary incontinence (SUI) or occult stress urinary incontinence (OSUI) are randomized to prolapse surgery combined with anti incontinence surgery (concomitant surgery) or to prolapse surgery only. Patients with at least stage 2 POP are eligible, women with evident SUI are randomized in CUPIDO I. Patients without SUI are eligible for CUPIDO II and will have urodynamic evaluation or a standardized redression test. Women with OSUI are randomized, women without OSUI are followed up but not randomized. The primary outcome measure is absence of SUI twelve months after surgery. Furthermore, economic evaluations are conducted, and the effectiveness of urodynamic investigation is evaluated against a non-invasive way to determine SUI in women with POP. A total of 450 women will be included in the study

    Enhanced growth rate of atmospheric particles from sulfuric acid

    Get PDF
    In the present-day atmosphere, sulfuric acid is the most important vapour for aerosol particle formation and initial growth. However, the growth rates of nanoparticles (<10 nm) from sulfuric acid remain poorly measured. Therefore, the effect of stabilizing bases, the contribution of ions and the impact of attractive forces on molecular collisions are under debate. Here, we present precise growth rate measurements of uncharged sulfuric acid particles from 1.8 to 10 nm, performed under atmospheric conditions in the CERN (European Organization for Nuclear Research) CLOUD chamber. Our results show that the evaporation of sulfuric acid particles above 2 nm is negligible, and growth proceeds kinetically even at low ammonia concentrations. The experimental growth rates exceed the hard-sphere kinetic limit for the condensation of sulfuric acid. We demonstrate that this results from van der Waals forces between the vapour molecules and particles and disentangle it from charge–dipole interactions. The magnitude of the enhancement depends on the assumed particle hydration and collision kinetics but is increasingly important at smaller sizes, resulting in a steep rise in the observed growth rates with decreasing size. Including the experimental results in a global model, we find that the enhanced growth rate of sulfuric acid particles increases the predicted particle number concentrations in the upper free troposphere by more than 50 %

    Rapid growth of new atmospheric particles by nitric acid and ammonia condensation

    Get PDF
    New-particle formation is a major contributor to urban smog1,2^{1,2}, but how it occurs in cities is often puzzling3^{3}. If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms4,5^{4,5}

    Enhanced growth rate of atmospheric particles from sulfuric acid

    Get PDF
    In the present-day atmosphere, sulfuric acid is the most important vapour for aerosol particle formation and initial growth. However, the growth rates of nanoparticles (<10 nm) from sulfuric acid remain poorly measured. Therefore, the effect of stabilizing bases, the contribution of ions and the impact of attractive forces on molecular collisions are under debate. Here, we present precise growth rate measurements of uncharged sulfuric acid particles from 1.8 to 10 nm, performed under atmospheric conditions in the CERN (European Organization for Nuclear Research) CLOUD chamber. Our results show that the evaporation of sulfuric acid particles above 2 nm is negligible, and growth proceeds kinetically even at low ammonia concentrations. The experimental growth rates exceed the hard-sphere kinetic limit for the condensation of sulfuric acid. We demonstrate that this results from van derWaals forces between the vapour molecules and particles and disentangle it from charge-dipole interactions. The magnitude of the enhancement depends on the assumed particle hydration and collision kinetics but is increasingly important at smaller sizes, resulting in a steep rise in the observed growth rates with decreasing size. Including the experimental results in a global model, we find that the enhanced growth rate of sulfuric acid particles increases the predicted particle number concentrations in the upper free troposphere by more than 50 %.Peer reviewe

    Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method

    Get PDF
    Ions enhance the formation rate of atmospheric aerosol particles, which play an important role in Earth's radiative balance. Ion-induced nucleation involves the stepwise accretion of neutral monomers onto a molecular cluster containing an ion, which helps to stabilize the cluster against evaporation. Although theoretical frameworks exist to calculate the collision rate coefficients between neutral molecules and ions, they need to be experimentally confirmed, ideally under atmospherically relevant conditions of around 1000 ion pairs cm(-3). Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we have measured the collision rate coefficients between neutral iodic acid (HIO3) monomers and charged iodic acid molecular clusters containing up to 11 iodine atoms. Three methods were analytically derived to calculate ion-polar molecule collision rate coefficients. After evaluation with a kinetic model, the 50% appearance time method is found to be the most robust. The measured collision rate coefficient, averaged over all iodine clusters, is (2.4 +/- 0.8)x10(-9 )cm(3) s(-1), which is close to the expectation from the surface charge capture theory.Peer reviewe

    The driving factors of new particle formation and growth in the polluted boundary layer

    Get PDF
    Publisher Copyright: © 2021 Mao Xiao et al.New particle formation (NPF) is a significant source of atmospheric particles, affecting climate and air quality. Understanding the mechanisms involved in urban aerosols is important to develop effective mitigation strategies. However, NPF rates reported in the polluted boundary layer span more than 4 orders of magnitude, and the reasons behind this variability are the subject of intense scientific debate. Multiple atmospheric vapours have been postulated to participate in NPF, including sulfuric acid, ammonia, amines and organics, but their relative roles remain unclear. We investigated NPF in the CLOUD chamber using mixtures of anthropogenic vapours that simulate polluted boundary layer conditions. We demonstrate that NPF in polluted environments is largely driven by the formation of sulfuric acid-base clusters, stabilized by the presence of amines, high ammonia concentrations and lower temperatures. Aromatic oxidation products, despite their extremely low volatility, play a minor role in NPF in the chosen urban environment but can be important for particle growth and hence for the survival of newly formed particles. Our measurements quantitatively account for NPF in highly diverse urban environments and explain its large observed variability. Such quantitative information obtained under controlled laboratory conditions will help the interpretation of future ambient observations of NPF rates in polluted atmospheres.Peer reviewe
    corecore