162 research outputs found

    Control of the persistent currents in two interacting quantum rings through the Coulomb interaction and inter-ring tunneling

    Full text link
    The persistent current in two vertically coupled quantum rings containing few electrons is studied. We find that the Coulomb interaction between the rings in the absence of tunneling affects the persistent current in each ring and the ground state configurations. Quantum tunneling between the rings alters significantly the ground state and the persistent current in the system.Comment: accepted for publication in Phys. Rev.

    Artificial molecular quantum rings: Spin density functional theory calculations

    Full text link
    The ground states of artificial molecules made of two vertically coupled quantum rings are studied within the spin density functional theory for systems containing up to 13 electrons. Quantum tunneling effects on the electronic structure of the coupled rings are analyzed. For small ring radius, our results recover those of coupled quantum dots. For intermediate and large ring radius, new phases are found showing the formation of new diatomic artificial ring molecules. Our results also show that the tunneling induced phase transitions in the coupled rings occur at much smaller tunneling energy as compared to those for coupled quantum dot systems.Comment: 10 pages, 6 figure

    The two electron artificial molecule

    Full text link
    Exact results for the classical and quantum system of two vertically coupled two-dimensional single electron quantum dots are obtained as a function of the interatomic distance (d) and with perpendicular magnetic field. The classical system exhibits a second order structural transition as a function of d which is smeared out and shifted to lower d values in the quantum case. The spin-singlet - spin-triplet oscillations are shifted to larger magnetic fields with increasing d and are quenched for a sufficiently large interatomic distance.Comment: 4 pages, 4 ps figure

    Artificial molecular quantum rings under magnetic field influence

    Full text link
    The ground states of few electrons confined in two vertically coupled quantum rings in the presence of an external magnetic field are studied systematically within the current spin-density functional theory. Electron-electron interactions combined with inter-ring tunneling affects the electronic structure and the persistent current. For small values of the external magnetic field, we recover the zero magnetic field molecular quantum ring ground state configurations. Increasing the magnetic field many angular momentum, spin, and iso-spin transitions are predicted to occur in the ground state. We show that these transitions follow certain rules, which are governed by the parity of the number of electrons, the single particle picture, the Hund's rules and many-body effects.Comment: accepted for publication in Journal of Applied Physics (in press

    Two level anti-crossings high up in the single-particle energy spectrum of a quantum dot

    Full text link
    We study the evolution with magnetic field of the single-particle energy levels high up in the energy spectrum of one dot as probed by the ground state of the adjacent dot in a weakly coupled vertical quantum dot molecule. We find that the observed spectrum is generally well accounted for by the calculated spectrum for a two-dimensional elliptical parabolic confining potential, except in several regions where two or more single-particle levels approach each other. We focus on two two-level crossing regions which show unexpected anti-crossing behavior and contrasting current dependences. Within a simple coherent level mixing picture, we can model the current carried through the coupled states of the probed dot provided the intrinsic variation with magnetic field of the current through the states (as if they were uncoupled) is accounted for by an appropriate interpolation scheme.Comment: 4 pages, 4 figures, accepted for publication in Physica E in MSS 13 conference proceeding

    Classical Many-particle Clusters in Two Dimensions

    Full text link
    We report on a study of a classical, finite system of confined particles in two dimensions with a two-body repulsive interaction. We first develop a simple analytical method to obtain equilibrium configurations and energies for few particles. When the confinement is harmonic, we prove that the first transition from a single shell occurs when the number of particles changes from five to six. The shell structure in the case of an arbitrary number of particles is shown to be independent of the strength of the interaction but dependent only on its functional form. It is also independent of the magnetic field strength when included. We further study the effect of the functional form of the confinement potential on the shell structure. Finally we report some interesting results when a three-body interaction is included, albeit in a particular model.Comment: Minor corrections, a few references added. To appear in J. Phys: Condensed Matte

    High-field magnetoexcitons in unstrained GaAs/AlxGa1-xAs quantum dots

    Get PDF
    The magnetic field dependence of the excitonic states in unstrained GaAs/AlxGa1-xAs quantum dots is investigated theoretically and experimentally. The diamagnetic shift for the ground and the excited states are studied in magnetic fields of varying orientation. In the theoretical study, calculations are performed within the single band effective mass approximation, including band nonparabolicity, the full experimental three-dimensional dot shape and the electron-hole Coulomb interaction. These calculations are compared with the experimental results for both the ground and the excited states in fields up to 50 Tesla. Good agreement is found between theory and experiment

    Magnetospectroscopy of epitaxial few-layer graphene

    Full text link
    The inter-Landau level transitions observed in far-infrared transmission experiments on few-layer graphene samples show a behaviour characteristic of the linear dispersion expected in graphene. This behaviour persists in relatively thick samples, and is qualitatively different from that of thin samples of bulk graphite.Comment: Invited short review to appear in a special issue of Solid State Communication

    Exciton and negative trion dissociation by an external electric field in vertically coupled quantum dots

    Full text link
    We study the Stark effect for an exciton confined in a pair of vertically coupled quantum dots. A single-band approximation for the hole and a parabolic lateral confinement potential are adopted which allows for the separation of the lateral center-of-mass motion and consequently for an exact numerical solution of the Schr\"odinger equation. We show that for intermediate tunnel coupling the external electric field leads to the dissociation of the exciton via an avoided crossing of bright and dark exciton energy levels which results in an atypical form of the Stark shift. The electric-field-induced dissociation of the negative trion is studied using the approximation of frozen lateral degrees of freedom. It is shown that in a symmetric system of coupled dots the trion is more stable against dissociation than the exciton. For an asymmetric system of coupled dots the trion dissociation is accompanied by a positive curvature of the recombination energy line as a function of the electric field.Comment: PRB - in prin

    Classical double-layer atoms: artificial molecules

    Full text link
    The groundstate configuration and the eigenmodes of two parallel two-dimensional classical atoms are obtained as function of the inter-atomic distance (d). The classical particles are confined by identical harmonic wells and repel each other through a Coulomb potential. As function of d we find several structural transitions which are of first or second order. For first (second) order transitions the first (second) derivative of the energy with respect to d is discontinuous, the radial position of the particles changes discontinuously (continuously) and the frequency of the eigenmodes exhibit a jump (one mode becomes soft, i.e. its frequency becomes zero).Comment: 4 pages, RevTex, 5 ps figures, to appear in Phys.Rev.Let
    • …
    corecore