16,976 research outputs found

    A Generic Algorithm for IACT Optical Efficiency Calibration using Muons

    Full text link
    Muons produced in Extensive Air Showers (EAS) generate ring-like images in Imaging Atmospheric Cherenkov Telescopes when travelling near parallel to the optical axis. From geometrical parameters of these images, the absolute amount of light emitted may be calculated analytically. Comparing the amount of light recorded in these images to expectation is a well established technique for telescope optical efficiency calibration. However, this calculation is usually performed under the assumption of an approximately circular telescope mirror. The H.E.S.S. experiment entered its second phase in 2012, with the addition of a fifth telescope with a non-circular 600m2^2 mirror. Due to the differing mirror shape of this telescope to the original four H.E.S.S. telescopes, adaptations to the standard muon calibration were required. We present a generalised muon calibration procedure, adaptable to telescopes of differing shapes and sizes, and demonstrate its performance on the H.E.S.S. II array.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    Potential for measuring the longitudinal and lateral profile of muons in TeV air showers with IACTs

    Get PDF
    Muons are copiously produced within hadronic extensive air showers (EAS) occurring in the Earth's atmosphere, and are used by particle air shower detectors as a means of identifying the primary cosmic ray which initiated the EAS. Imaging Atmospheric Cherenkov Telescopes (IACTs), designed for the detection of gamma-ray initiated EAS for the purposes of Very High Energy (VHE) gamma-ray astronomy, are subject to a considerable background signal due to hadronic EAS. Although hadronic EAS are typically rejected for gamma-ray analysis purposes, single muons produced within such showers generate clearly identifiable signals in IACTs and muon images are routinely retained and used for calibration purposes. For IACT arrays operating with a stereoscopic trigger, when a muon triggers one telescope, other telescopes in IACT arrays usually detect the associated hadronic EAS. We demonstrate for the first time the potential of IACT arrays for competitive measurements of the muon content of air showers, their lateral distribution and longitudinal profile of production slant heights in the TeV energy range. Such information can provide useful input to hadronic interaction models.Comment: 15 pages, 11 figures, 2 tables, accepted for publication in Astroparticle Physic

    A Proton Magnetic Resonance Study of the Association of Lysozyme with Monosaccharide Inhibitors

    Get PDF
    It has been shown that the acetamido methyl protons of N-acetyl-d-glucosamine undergo a chemical shift to higher fields in their proton magnetic resonance spectrum when the inhibitor is bound to lysozyme. The observed chemical shift in the presence of the enzyme is different for the agr- and ß-anomeric forms of 2-acetamido-2-deoxy-d-glucopyranose indicating either a difference in the affinity of the anomeric forms for lysozyme or different magnetic environments for the methyl protons in their enzyme-bound state. That the agr- and ß-anomeric forms of GlcAc bind to lysozyme in a competitive fashion was indicated by observing the proton magnetic resonance spectra in the presence of 2-acetamido-d3-2-deoxy-agr-d-glucopyranose. The methyl glycosides, methyl-agr-GlcAc and methyl-ß-GlcAc, were also shown to bind competitively with both anomers of GlcAc. Quantitative analysis of the chemical shift data observed for the association of GlcAc with lysozyme was complicated by the mutarotation of GlcAc between its agr- and ß-anomeric forms. However, in the case of the methyl glucosides, where the conformation of each anomer is frozen, it was possible to analyze the chemical shift data in a straightforward manner, and the dissociation constant as well as the chemical shift of the acetamido methyl protons of the enzyme-inhibitor complex was determined for both anomers. The results indicate that the two anomers of methyl-GlcAc bind to lysozyme with slightly different affinities but that the acetamido methyl groups of both anomers experience identical magnetic environments in the enzyme-inhibitor complex

    Phytoplankton And The Macondo Oil Spill: A Comparison Of The 2010 Phytoplankton Assemblage To Baseline Conditions On The Louisiana Shelf

    Get PDF
    The Macondo oil spill was likely the largest oil spill to ever occur in United States territorial waters. We report herein our findings comparing the available baseline phytoplankton data from coastal waters west of the Mississippi River, and samples collected monthly from the same sampling stations, during and after the oil spill (May-October, 2010). Our results indicate that overall, the phytoplankton abundance was 85% lower in 2010 versus the baseline, and that the species composition of the phytoplankton community moved towards diatoms and cyanobacteria and away from ciliates and phytoflagellates. The results of this study reaffirm the view that phytoplankton responses will vary by the seasonal timing of the oil spill and the specific composition of the spilled oil. The trophic impacts of the purported lower abundance of phytoplankton in 2010 coupled with the observed assemblage shift remain unknown. (C) 2015 Elsevier Ltd. All rights reserved

    On-the-fly memory compression for multibody algorithms.

    Get PDF
    Memory and bandwidth demands challenge developers of particle-based codes that have to scale on new architectures, as the growth of concurrency outperforms improvements in memory access facilities, as the memory per core tends to stagnate, and as communication networks cannot increase bandwidth arbitrary. We propose to analyse each particle of such a code to find out whether a hierarchical data representation storing data with reduced precision caps the memory demands without exceeding given error bounds. For admissible candidates, we perform this compression and thus reduce the pressure on the memory subsystem, lower the total memory footprint and reduce the data to be exchanged via MPI. Notably, our analysis and transformation changes the data compression dynamically, i.e. the choice of data format follows the solution characteristics, and it does not require us to alter the core simulation code

    Groundwater seepage landscapes from distant and local sources in experiments and on Mars

    Get PDF
    © 2014 Author(s). Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material properties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow patterns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from different groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems. We study groundwater seepage from a distant source of groundwater and from infiltration of local precipitation in a series of sandbox experiments and combine our results with previous experiments and observations of the Martian surface. Key results are that groundwater flow piracy acts on valleys fed by a distant groundwater source and results in a sparsely dissected landscape of many small and a few large valleys. In contrast, valleys fed by a local groundwater source, i.e., nearby infiltration, result in a densely dissected landscape. In addition, valleys fed by a distant groundwater source grow towards that source, while valleys with a local source grow in a broad range of directions and have a strong tendency to bifurcate, particularly on flatter surfaces. We consider these results with respect to two Martian cases: Louros Valles shows properties of seepage by a local source of groundwater and Nirgal Vallis shows evidence of a distant source, which we interpret as groundwater flow from Tharsis
    corecore