36 research outputs found

    Recruiting participants for interventions to prevent the onset of depressive disorders: Possibile ways to increase participation rates

    Get PDF
    Background: Although indicated prevention of depression is available for about 80% of the Dutch population at little or no cost, only a small proportion of those with subthreshold depression make use of these services. Methods: A narrative review is conducted of the Dutch preventive services in mental health care, also addressing the problem of low participation rates. We describe possible causes of these low participation rates, which may be related to the participants themselves, the service system, and the communication to the public, and we put forward possible solutions to this problem. Results: There are three main groups of reasons why the participation rates are low: reasons within the participants (e.g., not considering themselves as being at risk; thinking the interventions are not effective; or being unwilling to participate because of the stigma associated with depression); reasons within the health care system; and reasons associated with the communication about the preventive services. Possible solutions to increasing the participation rate include organizing mass media campaigns, developing internet-based preventive interventions, adapting preventive interventions to the needs of specific subpopulations, positioning the services in primary care, integrating the interventions in community-wide interventions, and systematically screening high-risk groups for potential participants. Discussion: Prevention could play an important role in public mental health in reducing the enormous burden of depression. However, before this can be realized more research is needed to explore why participation rates are low and how these rates can be improved

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Synthesis and validation of [F-18]mBPET-1, a fluorine-18 labelled mTOR inhibitor derivative based on a benzofuran backbone

    Get PDF
    BACKGROUND: Targeted therapy of HER2 positive breast cancer has led to clinical success in some cases with primary and secondary resistance being major obstacles. Due to the substantial involvement of mTOR kinase in cell growth and proliferation pathways it is now targeted in combination treatments to counteract HER2 targeted therapy resistance. However, the selection of receptive patient populations for a specific drug combination is crucial. This work aims to develop a molecular probe capable of identifying patients with tumour populations which are receptive to RAD001 combination therapy. Based on the structure of a mTOR inhibitor specific for mTORC1, we designed, synthesised and characterised a novel benzofuran based molecular probe which suits late stage fluorination via Click chemistry. RESULTS: Synthesis of the alkyne precursor 5 proceeded in 27.5% yield over 7 linear steps. Click derivatisation gave the non-radioactive standard in 25% yield. Radiosynthesis of [18F]1-((1-(2-Fluoroethyl)-1H-1,2,3-triazol-4-yl) methyl)-4-((5-methoxy-2-phenylbenzofuran-4-yl) methyl) piperazine ([18F]mBPET-1) proceeded over two steps which were automated on an iPhase FlexLab synthesis module. In the first step, 2-[18F]fluoroethylazide ([18F]6) was produced, purified by automated distillation in 60% non-decay-corrected yield and subjected to Click conditions with 5. Semi-preparative RP-HPLC purification and reformulation gave [18F]mBPET-1 in 40% ± 5% (n = 6) overall RCY with a process time of 90 min. Radiochemical purity was ≥99% at end of synthesis (EOS) and ≥ 98% after 4 h at room temperature. Molar activities ranged from typically 24.8 GBq/μmol (EOS) to a maximum of 78.6 GBq/μmol (EOS). Lipophilicity of [18F]mBPET-1 was determined at pH 7.4 (logD7.4 = 0.89). [18F]mBPET-1 showed high metabolic stability when incubated with mouse S9 liver fractions which resulted in a 0.8% drop in radiochemical purity after 3 h. Cell uptake assays showed 1.3-1.9-fold increased uptake of the [18F]mBPET-1 in RAD001 sensitive compared to insensitive cells across a panel of 4 breast cancer cell lines. CONCLUSION: Molecular targeting of mTOR with [18F]mBPET-1 distinguishes mTOR inhibitor sensitive and insensitive cell lines. Future studies will explore the ability of [18F]mBPET-1 to predict response to mTOR inhibitor treatment in in vivo models

    In Vitro and In Vivo Evaluation of Zr-89-DS-8273a as a Theranostic for Anti-Death Receptor 5 Therapy

    No full text
    Background: DS-8273a, an anti-human death receptor 5 (DR5) agonistic antibody, has cytotoxic activity against human cancer cells and induces apoptosis after specific binding to DR5. DS-8273a is currently being used in clinical Phase I trials. This study evaluated the molecular imaging of DR5 expression in vivo in mouse tumor models using SPECT/CT and PET/MRI, as a tool for drug development and trial design. Methods: DS-8273a was radiolabeled with indium-111 and zirconium-89. Radiochemical purity, immunoreactivity, antigen binding affinity and serum stability were assessed in vitro. In vivo biodistribution and pharmacokinetic studies were performed, including SPECT/CT and PET/MR imaging. A dose-escalation study using a PET/MR imaging quantitative analysis was also performed to determine DR5 receptor saturability in a mouse model. Results:111In-CHX-A″-DTPA-DS-8273a and 89Zr-Df-Bz-NCS-DS-8273a showed high immunoreactivity (100%), high serum stability, and bound to DR5 expressing cells with high affinity (Ka, 1.02-1.22 × 1010 M-1). The number of antibodies bound per cell was 32,000. In vivo biodistribution studies showed high and specific uptake of 111In-CHX-A″-DTPA-DS-8273a and 89Zr-Df-Bz-NCS-DS-8273a in DR5 expressing COLO205 xenografts, with no specific uptake in normal tissues or in DR5-negative CT26 xenografts. DR5 receptor saturation was observed in vivo by biodistribution studies and quantitative PET/MRI analysis. Conclusion:89Zr-Df-Bz-NCS-DS-8273a is a potential novel PET imaging reagent for human bioimaging trials, and can be used for effective dose assessment and patient response evaluation in clinical trials
    corecore